

# WEEELABEX

# **De-pollution monitoring specification**

With the financial support of the LIFE programme of the European Community



| Title           | A10 WEEELABEX De-pollution monitoring specification |
|-----------------|-----------------------------------------------------|
| Status          | Definitive                                          |
| Revision / Date | REV 02 version 1 – 5 <sup>th</sup> November 2020    |

# Content

| 1 | Ir     | Introduction   |                                                                                                        |     |  |
|---|--------|----------------|--------------------------------------------------------------------------------------------------------|-----|--|
|   | 1.1    | Sta            | andards of reference                                                                                   | . 4 |  |
|   | 1.2    | Us             | e of this document                                                                                     | . 4 |  |
|   | 1.3    | Co             | pyright                                                                                                | . 4 |  |
| 2 | С      | Overvie        | w of the de-pollution methodologies, limit values and target values                                    | 5   |  |
|   | 2.1    | Ap             | plicable de-pollution performance methodologies                                                        | . 5 |  |
| 3 | V      | VEEEL          | ABEX de-pollution summaries, supplements, specifications and clarifications                            | 7   |  |
|   | 3.1    | LA             | RGE APPLIANCES                                                                                         | . 7 |  |
|   | 3      | .1.1           | Summary of de-pollution target values and limit values                                                 | . 7 |  |
|   | 3      | .1.2           | De-pollution supplements, specifications and clarifications                                            | . 8 |  |
|   | 3.2    | MI             | XED EQUIPMENT                                                                                          | . 9 |  |
|   | 3      | .2.1           | Summary of de-pollution target values and limit values                                                 | . 9 |  |
|   | 3      | .2.2           | De-pollution supplements, specifications and clarifications                                            | 10  |  |
|   | 3.3    | TE             | MPERATURE EXCHANGE EQUIPMENT                                                                           | 12  |  |
|   | 3<br>d | .3.1<br>ay bus | Summary of de-pollution target values and limit values for performance tests and for day-to-<br>siness | 12  |  |
|   | 3      | .3.2           | De-pollution supplements, specifications and clarifications                                            | 15  |  |
|   | 3.4    | CF             | RT DISPLAY APPLIANCES                                                                                  | 17  |  |
|   | 3      | .4.1           | Summary of de-pollution target values and limit values                                                 | 17  |  |
|   | 3      | .4.2           | De-pollution supplements, specifications and clarifications                                            | 19  |  |
|   | 3.5    | FL             | AT PANEL DISPLAY EQUIPMENT                                                                             | 22  |  |
|   | 3      | .5.1           | Summary of de-pollution target values and limit values                                                 | 22  |  |
|   | 3      | .5.2           | De-pollution supplements, specifications and clarifications                                            | 23  |  |
|   | 3.6    | GA             | AS DISCHARGE LAMPS                                                                                     | 26  |  |
|   | 3      | .6.1           | Summary of de-pollution target values and limit values                                                 | 26  |  |
|   | 3      | .6.2           | De-pollution supplements, specifications and clarifications                                            | 26  |  |
|   | 3.7    | PF             | IOTOVOLTAIC PANELS                                                                                     | 29  |  |
|   | 3      | .7.1           | Summary of de-pollution target values and limit values                                                 | 29  |  |
|   | 3      | .7.2           | De-pollution supplements, specifications and clarifications                                            | 30  |  |

| Annex 1: Couples of min. values "diameter-height" for electrolyte capacitors in scope         | 31 |
|-----------------------------------------------------------------------------------------------|----|
| Annex 2a: SAMPLING PROTOCOL example                                                           | 32 |
| Annex 2b: SAMPLE LABELING example                                                             | 33 |
| Annex 3: Examples of sampling equipment and tools                                             | 34 |
| Annex 4: Analytical methods to be used by accredited laboratories for the analysis of samples | 36 |

# 1 Introduction

The CLC/TS 50625-3-1 - "Collection, logistics & treatment requirements for WEEE - Part 3-1: Specification for de-pollution – General" provides the general de-pollution limits and target values and describes the related procedures and methods that have to be followed in order to measure the depollution efficiency of the WEEE treatment processes. For specific audited streams, specific Technical Specifications (TS) of the EN 50625 series of standards are applicable and provide additional specific limit values, target values, procedures and methods for measuring the depollution efficiency.

In addition, the auditor shall refer to this WEEELABEX document "A10 WEEELABEX De-pollution monitoring specification" which <u>may supplement</u>, specify or clarify the information given in the <u>TS</u>.

This A10 document is applicable for the accredited WEEELABEX Certification scheme - Operators no.: *EURo B2101*.

#### 1.1 Standards of reference

In the context of the WEEELABEX Certification scheme, WEEELABEX requirements consist of several standards including the WEEELABEX normative document on Treatment V10.0, this WEEELABEX document "A10 WEEELABEX De-pollution monitoring specification" and published relevant CENELEC standards – the currently valid list of the applicable standards is available in the B04 WEEELABEX Guidance Document.

In general, the following Technical Specifications (TS) of the EN 50625 series of standards, that provide general and specific limit values, target values, procedures and methods for measuring the depollution efficiency, are applicable for each WEEELABEX Audit:

| No. | WEEE treatment process stream:   | Applicable Technical Specifications (TS) of |
|-----|----------------------------------|---------------------------------------------|
|     |                                  | the EN 50625 series of standards            |
| А   | Large appliances *               | CLC/TS 50625-3-1                            |
| В   | Mixed equipment *                | CLC/TS 50625-3-1                            |
| С   | Temperature exchange equipment * | CLC/TS 50625-3-1 and CLC/TS 50625-3-4       |
| D   | CRT display appliances *         | CLC/TS 50625-3-1 and CLC/TS 50625-3-3       |
| Е   | Flat panel display equipment *   | CLC/TS 50625-3-1 and CLC/TS 50625-3-3       |
| F   | Gas discharge lamps *            | CLC/TS 50625-3-1 and CLC/TS 50625-3-2       |
| G   | Photovoltaic panels *            | CLC/TS 50625-3-1 and CLC/TS 50625-3-5       |
| Н   | Others *                         | CLC/TS 50625-3-1                            |

\* Definitions and descriptions of the WEEE treatment streams are defined in the document "B 02 Eligibility of Treatment Operators"

Table 1: List of applicable Technical Specifications (TS) of the EN 50625 series of standards to be followed

#### 1.2 Use of this document

Each WEEELABEX Auditor shall have knowledge of and access to the applicable Technical Specifications (TS) of the EN 50625 series of standards as described in the Table 1. This A10 document does not substitute those TS, however, it does only summarize, supplement, specify or clarify the information given in the TS if needed or if appropriate.

#### 1.3 Copyright

All extracts from the CENELEC standards (EN 50625 series of standards and related Technical Specifications) included in this document are © CENELEC copyrighted.

#### 2 Overview of the de-pollution methodologies, limit values and target values

#### 2.1 Applicable de-pollution performance methodologies

Monitoring of de-pollution performance shall be determined by one or several of the three following methodologies:

- **Target value methodology** = quantification of the outgoing stream and comparison with a target value (benchmark)
- **Mass Balance methodolog**y = establishment of a mass balance between incoming and outgoing streams
- **Analysis methodology** = analyses of representative samples of relevant output fractions, or analysis of emissions to ambient air, air, and water

The following table lists the WEEE treatment streams and related applicable de-pollution performance methodologies (note that the detailed de-pollution target and limit values are summarizes in the Chaper 3):

| WEEE treatment<br>stream             | Target value<br>methodology                                                                                                                                                                                                                                                                                                                                                                                | Mass Balance<br>methodology | Analysis methodology                                                                                                                                                                                                                                                                                 |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LARGE<br>APPLIANCES                  | Applicable for:<br>- CAPACITORS                                                                                                                                                                                                                                                                                                                                                                            | Not applicable              | Applicable for:<br>- PCB and CADMIUM in<br>the physically smallest<br>non-metallic mechanical<br>treatment fraction<br>(applicable for mechanical<br>treatment only)                                                                                                                                 |
| MIXED<br>EQUIPMENT                   | Applicable for:<br>- CAPACITORS<br>- BATTERIES                                                                                                                                                                                                                                                                                                                                                             | Not applicable              | Applicable for:<br>- PCB and CADMIUM in<br>the physically smallest<br>non-metallic mechanical<br>treatment fraction<br>(applicable for mechanical<br>treatment only)<br>- BROMINE in plastics<br>fractions                                                                                           |
| TEMPERATURE<br>EXCHANGE<br>EQUIPMENT | <ul> <li>Applicable for (Target value / Mass Balance methodology):</li> <li>CAPACITORS</li> <li>VFC and VHC recovered in the STEP 1 treatment</li> <li>OIL recovered in the STEP 1 treatment</li> <li>VFC and VHC recovered in the STEP 2 treatment</li> <li>VFC removed and captured in STEP 2 treatment and transferred to the STEP 3 treatment</li> <li>CONVERTING RATE for STEP 3 treatment</li> </ul> |                             | Applicable for:<br>- VFC/VHC in oil<br>- VFC/VHC in PU fraction<br>- VFC in some other<br>fractions (applicable for<br>specific treatment of VHC<br>appliances only)<br>- OIL in compressors<br>- PU in Fe, non-Fe and<br>plastic fractions<br>- VFC/VHC/DANGEROUS<br>SUBSTANCES in air<br>emissions |

| CRT DISPLAY<br>APPLIANCES          | Applicable for:<br>- CAPACITORS | Not applicable                                                                                                                                                                                                                           | Applicable for:<br>- SULPHUR in the<br>cleaned panel/mixed<br>glass, or<br>- FLUORESCENT<br>COATINGS on the CRT<br>glass<br>- LEAD OXIDE in the<br>separated panel glass<br>- CRT GLASS in anti-<br>implosive metal frames<br>and shadow masks, in<br>crushed or shredded<br>mixed fraction, in<br>deflection coils, in electron<br>canons<br>- BROMINE in plastics |
|------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FLAT PANEL<br>DISPLAY<br>EQUIPMENT | Not applicable                  | Applicable for:<br>- INTACT BACKLIGHT<br>LAMPS that are not<br>broken during manual<br>treatment process<br>(applicable for manual<br>treatment only)<br>- AIR FILTRATION<br>EFFICIENCY (applicable<br>for mechanical treatment<br>only) | fractions Applicable for: - MERCURY in the shredded mixed fraction - MERCURY in air emissions - BROMINE in plastics fractions                                                                                                                                                                                                                                       |
| GAS<br>DISCHARGE<br>LAMPS          | Not applicable                  | Not applicable                                                                                                                                                                                                                           | <ul> <li>Applicable for:</li> <li>MERCURY in the glass fractions</li> <li>MERCURY in the metal and mixed metal plastics fractions</li> <li>MERCURY concentration in Ambient Air, Air, and Water</li> </ul>                                                                                                                                                          |
| PHOTOVOLTAIC<br>PANELS             | Not applicable                  | Not applicable                                                                                                                                                                                                                           | Applicable for:- CADMIUM in glass<br>fractions- SELENIUM in glass<br>fractions- LEAD in glass fractions                                                                                                                                                                                                                                                             |

Table 2: List of WEEE treatment streams and related applicable de-pollution performance methodologies

#### 3 WEEELABEX de-pollution summaries, supplements, specifications and clarifications

This section provides summaries of de-pollution target values and limit values and in addition supplements, specifications and clarifications where appropriate per each WEEE treatment stream.

#### 3.1 LARGE APPLIANCES

#### 3.1.1 Summary of de-pollution target values and limit values

| LARGE APPLIANCES            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                              |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                             | PARAMETER TO<br>BE EVALUATED                                                                         | TARGET VALUE /<br>LIMIT VALUE                                                                                                                                                                                                                                                                                                                                                           | FREQUENCY                                                                                                                                    | NOTE                                                                                                                                                         |  |
| Target value<br>methodology | removed<br>CAPACITORS                                                                                | <pre>target value =<br/>calculated (calculation<br/>according to the CLC/TS<br/>50625-3-1, clause 6.2),<br/>or:<br/>= 1,3 kg/t (generally<br/>applicable for European<br/>countries), or<br/>= 1,4 kg/t (specifically<br/>applicable for France),<br/>or<br/>= 1,0 kg/t (specifically<br/>applicable for Italy), or<br/>= 1,0 kg/t (specifically<br/>applicable for Switzerland).</pre> | At least annually<br>(it shall be<br>recommended a<br>regular data<br>collection and<br>evaluation<br>monitoring<br>system, e.g.<br>monthly) | See the<br>WEEELABEX<br>Official Statement<br>2016_006 for<br>details.                                                                                       |  |
| Mass Balance<br>methodology | Not applicable                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                            | -                                                                                                                                                            |  |
| Analysis<br>methodology     | <b>PCB</b> in the<br>physically<br>smallest non-<br>metallic<br>mechanical<br>treatment fraction     | limit value = <b>50 mg/kg</b>                                                                                                                                                                                                                                                                                                                                                           | At least once per<br>year                                                                                                                    | Applicable for<br>mechanical<br>treatment only.                                                                                                              |  |
|                             | <b>CADMIUM</b> in the<br>physically<br>smallest non-<br>metallic<br>mechanical<br>treatment fraction | limit value = <b>100 mg/kg</b>                                                                                                                                                                                                                                                                                                                                                          | At least once per<br>year                                                                                                                    | Applicable for<br>mechanical<br>treatment only.<br>Applicable only if a<br>mixture of large<br>and small<br>appliances is<br>treated in the same<br>process. |  |

# 3.1.2 De-pollution supplements, specifications and clarifications

# 3.1.2.1 Target value methodology

#### Capacitors:

- Target value shall be calculated according to the CLC/TS 50625-3-1, clause 6.2 as specified in the WEEELABEX Official Statement 2016\_006.
- Electrolytic capacitors containing substances of concern shall be removed if they have height > 25 mm and diameter > 25 mm or proportionately similar volume = 12,27 cm<sup>3</sup> (Annex 1 shows couples of min. values "diameter-height" for electrolyte capacitors in scope).
- As per the WEEELABEX Official Statement 2016\_007 it is not required to remove capacitors with a "plastic casing" during the treatment/depollution process.

# 3.1.2.2 Mass Balance methodology

• Not applicable.

# 3.1.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-1.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by **laboratories approved** by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- Annex 4 summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

#### Specifically:

- **PCB** in the physically smallest non-metallic mechanical treatment fraction
  - No supplements, specifications or clarifications.
- CADMIUM in the physically smallest non-metallic mechanical treatment fraction
  - No supplements, specifications or clarifications.

# 3.2 MIXED EQUIPMENT

# 3.2.1 Summary of de-pollution target values and limit values

| MIXED EQUIPMENT             |                                                                                                      |                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                        |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
|                             | PARAMETER TO<br>BE EVALUATED                                                                         | TARGET VALUE /<br>LIMIT VALUE                                                                                                                                                                                                                                                                         | FREQUENCY                                                                                                                                    | NOTE                                                                   |  |
| Target value<br>methodology | removed<br>CAPACITORS                                                                                | target value =<br>calculated (calculation<br>according to the CLC/TS<br>50625-3-1, clause 10.2),<br>or:<br>= 0,9 kg/t (generally<br>applicable for European<br>countries), or<br>= 1,0 kg/t (specifically<br>applicable for<br>Switzerland).                                                          | At least annually<br>(it shall be<br>recommended a<br>regular data<br>collection and<br>evaluation<br>monitoring<br>system, e.g.<br>monthly) | See the<br>WEEELABEX<br>Official Statement<br>2016_006 for<br>details. |  |
|                             | removed<br>BATTERIES                                                                                 | target value =<br>calculated (calculation<br>according to the CLC/TS<br>50625-3-1, clause 10.2),<br>or:<br>= 1,8 kg/t (generally<br>applicable for European<br>countries), or<br>= 4,9 kg/t (specifically<br>applicable for France),or<br>= 2,3 kg/t (specifically<br>applicable for<br>Switzerland). | At least annually<br>(it shall be<br>recommended a<br>regular data<br>collection and<br>evaluation<br>monitoring<br>system, e.g.<br>monthly) | See the<br>WEEELABEX<br>Official Statement<br>2016_006 for<br>details. |  |
| Mass Balance<br>methodology | Not applicable                                                                                       | -                                                                                                                                                                                                                                                                                                     | -                                                                                                                                            | -                                                                      |  |
| Analysis<br>methodology     | <b>PCB</b> in the<br>physically<br>smallest non-<br>metallic<br>mechanical<br>treatment fraction     | limit value = <b>50 mg/kg</b>                                                                                                                                                                                                                                                                         | At least once per<br>year                                                                                                                    | Applicable for<br>mechanical<br>treatment only.                        |  |
|                             | <b>CADMIUM</b> in the<br>physically<br>smallest non-<br>metallic<br>mechanical<br>treatment fraction | limit value = <b>100 mg/kg</b>                                                                                                                                                                                                                                                                        | At least once per<br>year                                                                                                                    | Applicable for<br>mechanical<br>treatment only.                        |  |
|                             | <b>BROMINE</b> in plastics fractions                                                                 | limit value <b>= 2000 ppm</b>                                                                                                                                                                                                                                                                         | At least once per<br>year                                                                                                                    | See the<br>WEEELABEX<br>Official Statement<br>2020_003 for<br>details. |  |

# 3.2.2 De-pollution supplements, specifications and clarifications

## 3.2.2.1 Target value methodology

#### Capacitors:

- Target value shall be calculated according to the CLC/TS 50625-3-1, clause 10.2 as specified in the WEEELABEX Official Statement 2016\_006.
- Electrolytic capacitors containing substances of concern shall be removed if they have height > 25 mm and diameter > 25 mm or proportionately similar volume = 12,27 cm<sup>3</sup> (Annex 1 shows couples of min. values "diameter-height" for electrolyte capacitors in scope).
- As per the WEEELABEX Official Statement 2016\_007 it is not required to remove capacitors with a "plastic casing" during the treatment/depollution process.

# **Batteries:**

• Target value shall be calculated according to the CLC/TS 50625-3-1, clause 10.2 as specified in the WEEELABEX Official Statement 2016\_006.

# 3.2.2.2 Mass Balance methodology

• Not applicable.

# 3.2.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-1.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by **laboratories approved** by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- Annex 4 summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

#### Specifically:

.

- **PCB** in the physically smallest non-metallic mechanical treatment fraction
  - No supplements, specifications or clarifications.
  - **CADMIUM** in the physically smallest non-metallic mechanical treatment fraction
  - No supplements, specifications or clarifications.
- **BROMINE** in plastics fractions
  - Not applicable should be used only if the material is sent to incineration, for chemical conversion, or disposal.
  - One of the following possible scenarios shall be implemented to prove compliance with the de-pollution requirements related to brominated flame retardants in plastic fractions (see the WEEELABEX Official Statement 2020\_003 for details):
    - SCENARIO 1) two laboratory analysis of a plastic sample (PREFERABLE SOLUTION):
      - one analysis for the TOTAL BROMINE concentration (limit value = 2000 ppm as per the CLC/TS 50625-3-1);

- the second analysis for the RESTRICTED PBDEs (limit value = 1000 mg/kg as per the REGULATION (EU) 2019/1021).
- > SCENARIO 2) one laboratory analysis only for the RESTRICTED PBDEs:
  - if the result for RESTRICTED PBDEs is below 1000 mg/kg (compliant with the REGULATION (EU) 2019/1021) than such result can be assumed to be compliant with the CLC/TS 50625-3-1 as well (as the CLC/TS 50625-3-1 is aiming to remove the restricted PBDEs where the total Bromine is an indicator).
- > SCENARIO 3) one laboratory analysis only for the TOTAL BROMINE:
  - the WEEELABEX organisation does not defined any new limit value, however, as there is only limited evidence that the 2000 ppm total Bromine limit value is still suitable to confirm compliance with the up-dated REGULATION (EU) 2019/1021, the following scenario shall be applied:
    - if the result for total Bromine is below 1000 ppm than such result can be assumed to be compliant with the REGULATION (EU) 2019/1021 as it can be assumed that the concentration of restricted PBDEs is below 1000 mg/kg as well; however, data confirming this statement shall be continuously collected;
    - if the result for total Bromine is higher than 1000 ppm then an additional analysis of the restricted PBDEs shall be carried out to confirm (or not) compliance with the REGULATION (EU) 2019/1021.
  - NOTE: if there is a proven evidence in a country or region (based on sufficient analysis results) that a different value for the total Bromine can be used as a more suitable indicator confirming compliance with the REGULATION (EU) 2019/1021 then such value may be used instead of the mentioned 1000 ppm.

# 3.3 TEMPERATURE EXCHANGE EQUIPMENT

# 3.3.1 Summary of de-pollution target values and limit values for performance tests and for day-today business

| TEMPERATURE EXCHANGE EQUIPMENT                |                                                                                  |                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                            |
|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | PARAMETER TO<br>BE EVALUATED                                                     | TARGET VALUE /<br>LIMIT VALUE                                                                                                                                              | FREQUENCY                                                                                                                                    | NOTE                                                                                                                                       |
| Target value<br>methodology                   | removed<br>CAPACITORS                                                            | target value =<br>calculated (calculation<br>according to the CLC/TS<br>50625-3-1, clause 7.2),<br>or:<br>= 0,08 kg/t (generally<br>applicable for European<br>countries). | At least annually<br>(it shall be<br>recommended a<br>regular data<br>collection and<br>evaluation<br>monitoring<br>system, e.g.<br>monthly) | see the<br>WEEELABEX<br>Official Statement<br>2016_006 for<br>details                                                                      |
| Target value /<br>Mass Balance<br>methodology | VFC recovered in<br>the STEP 1<br>treatment in<br>performance<br>tests           | target value = <b>90% of</b><br>expected value for<br>VFC [in kg]                                                                                                          | Once a year<br>(during a<br>validated STEP 1<br>performance<br>test)                                                                         | -                                                                                                                                          |
|                                               | VFC and VHC<br>recovered in the<br>STEP 1 treatment<br>in day-to-day<br>business | target value = <b>90% of</b><br>expected value for<br>VFC and VHC [in kg]                                                                                                  | Daily monitoring<br>(data collection);<br>weekly<br>evaluation of<br>results                                                                 | -                                                                                                                                          |
|                                               | OIL recovered in<br>the STEP 1<br>treatment in day-<br>to-day business           | target value = <b>90% of</b><br>expected value for OIL<br>[in kg]                                                                                                          | Daily monitoring<br>(data collection);<br>weekly<br>evaluation of<br>results                                                                 | -                                                                                                                                          |
|                                               | VFC and VHC<br>recovered in the<br>STEP 2 treatment<br>in performance<br>tests   | target value = 90% of<br>expected value for<br>VFC/VHC [in kg]                                                                                                             | Once a year<br>(during a<br>validated STEP 2<br>test)                                                                                        | Water content in<br>recovered<br>blowing agents<br>shall be determined<br>regularly and<br>deducted from the<br>mass of blowing<br>agents. |
|                                               | VFC and VHC<br>recovered in the<br>STEP 2 treatment<br>in day-to-day<br>business | target value = <b>90% of</b><br>expected value for<br>VFC/VHC [in kg]                                                                                                      | Daily monitoring<br>(data collection);<br>weekly<br>evaluation of<br>results                                                                 | Water content in<br>recovered<br>blowing agents<br>shall be determined<br>regularly and<br>deducted from the<br>mass of blowing<br>agents. |

|                         | VFC removed and<br>captured in<br>STEP 2 treatment<br>and transferred<br>to the STEP 3<br>treatment in<br>performance<br>tests | target value = 90% of<br>expected value [in kg] | Once a year<br>(during a<br>validated STEP 3<br>test)                                    | -                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                         | VFC removed and<br>captured in<br>STEP 2 treatment<br>and transferred<br>to the STEP 3<br>treatment in day-<br>to-day business | target value = 90% of<br>expected value [in kg] | Daily monitoring<br>(data collection);<br>weekly<br>evaluation of<br>results             | -                                                                                                                     |
|                         | CONVERTING<br>RATE for STEP 3<br>treatment                                                                                     | target value = <b>99,99%</b>                    | Conversion<br>efficiency of the<br>step 3 treatment<br>plant shall be<br>proven annually | Input data for raw<br>gas mass flow<br>shall be measured<br>continuously and<br>recorded<br>accordingly.              |
| Analysis<br>methodology | VFC and VHC in<br>oil                                                                                                          | limit value = <b>0,2%</b>                       | Quarterly<br>laboratory<br>analysis                                                      | Residual sum of<br>refrigerants<br>(VFC/VHC) in oil.                                                                  |
|                         | VFC in oil                                                                                                                     | limit value = <b>0,01%</b>                      | One analysis for<br>each vessel<br>containing oil<br>disposed                            | Applicable in case<br>that the operator<br>treats only VHC<br>appliances in the<br>STEP 1 process.                    |
|                         | <b>VFC</b> in output<br>VHC refrigerants                                                                                       | limit value = <b>0,01%</b>                      | One analysis for<br>each vessel<br>containing<br>refrigerants<br>disposed                | Applicable in case<br>that the operator<br>treats only VHC<br>appliances in the<br>STEP 1 process.                    |
|                         | PHASED OUT<br>VFCs in non-<br>phased out VFCs<br>refrigerants                                                                  | limit value = <b>0,01%</b>                      | One analysis for<br>each vessel<br>containing<br>refrigerants<br>disposed                | Applicable in case<br>that the operator<br>sorts out phased-<br>out VFCs from<br>other VFCs in the<br>STEP 1 process. |
|                         | <b>OIL</b> in compressors directly after the suction process                                                                   | limit value = <b>15 g</b>                       | Monthly on-site<br>analysis                                                              | -                                                                                                                     |

| <b>OIL</b> in compressors leaving the treatment plant for further treatment                              | limit value = "non-<br>dripping"                                                                                        | Monthly on-site<br>analysis                                                 | -                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| VFC and VHC in polyurethane                                                                              | limit value = <b>0,2%</b>                                                                                               | Quarterly<br>laboratory<br>analysis                                         | Residual sum of<br>VFC and VHC in<br>PU fraction.                                                                                 |
| <b>VFC</b> in output polyurethane from VHC appliances                                                    | limit value = <b>0,01%</b>                                                                                              | Quarterly<br>laboratory<br>analysis                                         | Applicable in case<br>that the operator<br>treats only VHC<br>appliances.                                                         |
| VFC in output<br>VHC blowing<br>agents                                                                   | limit value = <b>0,01%</b>                                                                                              | One analysis for<br>each vessel<br>containing<br>blowing agents<br>disposed | Applicable in case<br>that the operator<br>treats only VHC<br>appliances                                                          |
| <b>PU</b> in ferrous fractions                                                                           | limit value = <b>0,3%</b>                                                                                               | Monthly on-site<br>analysis                                                 | -                                                                                                                                 |
| <b>PU</b> in non-ferrous fractions                                                                       | limit value = 0,3%                                                                                                      | Monthly on-site<br>analysis                                                 | -                                                                                                                                 |
| <b>PU</b> in plastics fractions                                                                          | limit value = 0,5%                                                                                                      | Monthly on-site<br>analysis                                                 | -                                                                                                                                 |
| Chemical<br>composition of<br>the recovered<br>refrigerants<br>(VFC/VHC) from<br>STEP 1                  | No limit value is<br>defined                                                                                            | One analysis for<br>each vessel<br>containing<br>refrigerants<br>disposed   | The information is<br>to be used for<br>VFC/VHC recovery<br>calculations and<br>plausibility checks.                              |
| Chemical<br>composition of<br>the recovered<br>blowing agents<br>(VFC/VHC) from<br>STEP 2                | No limit value is<br>defined                                                                                            | One analysis for<br>each vessel<br>containing<br>blowing agent<br>disposed  | The information is<br>to be used for<br>VFC/VHC recovery<br>calculations and<br>plausibility checks.                              |
| VFC and VHC<br>concentration and<br>mass flow in<br>exhausted air<br>(from STEP 2 and<br>STEP 3 process) | general limit values<br>= 20 mg VFC/m <sup>3</sup><br>= 0,01 kg VFC/h.<br>= 50 mg VHC/m <sup>3</sup><br>= 0,05 kg VHC/h | VFC – continual<br>monitoring<br>VHC – at least<br>quarterly<br>monitoring  | Generally<br>applicable for<br>concentration and<br>mass flow in the<br>exhausted air from<br>the STEP 2 and<br>STEP 3 treatment. |

| Dangerous<br>substances<br>concentration in<br>exhaust gas flow<br>(from STEP 3<br>process) | general limit values<br>defined in Directive<br>2010/75/EU (Industrial<br>Emissions Directive), or<br>limit values per a valid<br>permit shall be applied | At least once a<br>year | Applicable for<br>concentration and<br>mass flow in the<br>exhausted air from<br>the STEP 3<br>treatment.                                           |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                                                                                                                                                           |                         | As a minimum, the<br>substances of<br>Annex VI of the<br>Directive<br>2010/75/EU<br>(Industrial<br>Emissions<br>Directive) should<br>be determined. |

# 3.3.2 De-pollution supplements, specifications and clarifications

#### 3.3.2.1 Target value methodology

#### Capacitors:

- Target value shall be calculated according to the CLC/TS 50625-3-1, clause 7.2 as specified in the WEEELABEX Official Statement 2016\_006.
- Electrolytic capacitors containing substances of concern shall be removed if they have height > 25 mm and diameter > 25 mm or proportionately similar volume = 12,27 cm<sup>3</sup> (Annex 1 shows couples of min. values "diameter-height" for electrolyte capacitors in scope).
- As per the WEEELABEX Official Statement 2016\_007 it is not required to remove capacitors with a "plastic casing" during the treatment/depollution process.

#### 3.3.2.2 Target value / Mass Balance methodology

• For details, see a separate **WEEELABEX Temperature exchange equipment Auditor manual** defining detailed procedures for the performance and validation of CFA performance tests.

#### 3.3.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-4.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by **laboratories approved** by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- Annex 4 summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

# Specifically:

- VFC/VHC in oil
  - CLC/TS 50625-3-4 defines the limit value for residual "VFC/VHC in oil". This limit value shall be understood as follows:
    - The limit value is defined for the <u>sum</u> of VFC and VHC in oil
- VFC in oil
  - applicable in case that the operator treats only VHC appliances in the STEP 1 process
  - o no supplements, specifications or clarifications
- VFC in output VHC refrigerants
  - applicable in case that the operator treats only VHC appliances in the STEP 1 process
  - PHASED OUT VFCs in non-phased out VFCs refrigerants
    - applicable in case that the operator sorts out phased-out VFCs from other VFCs in the STEP 1 process
    - no supplements, specifications or clarifications
- OIL in compressors directly after the suction process
  - o no supplements, specifications or clarifications
- OIL in compressors leaving the treatment plant for further treatment
  - CLC/TS 50625-3-4 defines the limit value as "non-dripping". As per the WEEELABEX requirements, the procedure to evaluate if the compressors comply with the limit value is as follows:
    - <u>10 compressors</u> shall be randomly selected for sampling
    - <u>10°C</u> is the minimum temperature at the sampling area
    - <u>10 mm hole</u> shall be drilled to each compressor either from the top or from the back side
    - <u>10 seconds</u> is the minimum duration that each compressor shall be left dripping
    - the limit value is fulfilled when at least 9 of the 10 compressors are non-dripping

# • VFC/VHC in polyurethane

- CLC/TS 50625-3-4 defines the limit value for residual "VFC/VHC in polyurethane". This limit value shall be understood as follows:
  - The limit value is defined for the <u>sum</u> of VFC and VHC
  - The limit value is related to the <u>PU fraction</u> (including the foreign matters)
- VFC in output polyurethane from VHC appliances
  - $\circ$  applicable in case that the operator treats only VHC appliances
  - o no supplements, specifications or clarifications
- VFC in output VHC blowing agents
  - applicable in case that the operator treats only VHC appliances
  - o no supplements, specifications or clarifications
- PU in ferrous fractions
  - o no supplements, specifications or clarifications
- PU in non-ferrous fractions
  - o no supplements, specifications or clarifications
  - PU in plastics fractions
    - no supplements, specifications or clarifications
- VFC and VHC concentration and mass flow in exhausted air
  - generally applicable for concentration and mass flow in the exhausted air from the STEP 2 treatment
  - o no supplements, specifications or clarifications
- DANGEROUS SUBSTANCES in exhaust gas flow
  - no supplements, specifications or clarifications
- Water content in the PU fraction
  - CLC/TS 50625-3-4 does not define any analysis of the PU to determine water content. However, as per the WEEELABEX Official Statement 2017\_001, the Auditor shall let determine the water content in PU fraction by an accredited laboratory and shall take into consideration the result for the calculation and evaluation of the CFA performance test results – the water content shall be deducted from the original weight of the PU fraction.

# 3.4 CRT DISPLAY APPLIANCES

# 3.4.1 Summary of de-pollution target values and limit values

| CRT DISPLA                  | Y APPLIANCES                                                                                  |                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                                                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | PARAMETER TO<br>BE EVALUATED                                                                  | TARGET VALUE /<br>LIMIT VALUE                                                                                                                                           | FREQUENCY                                                                                                                                    | NOTE                                                                                                                                                                                                                                     |
| Target value<br>methodology | removed<br>CAPACITORS                                                                         | target value =<br>calculated (calculation<br>according to the CLC/TS<br>50625-3-1, clause 8.2),<br>or:<br>= 1 kg/t (generally<br>applicable for European<br>countries). | At least annually<br>(it shall be<br>recommended a<br>regular data<br>collection and<br>evaluation<br>monitoring<br>system, e.g.<br>monthly) | See the<br>WEEELABEX<br>Official Statement<br>2016_006 for<br>details.                                                                                                                                                                   |
| Mass Balance<br>methodology | Not applicable                                                                                | -                                                                                                                                                                       | -                                                                                                                                            | -                                                                                                                                                                                                                                        |
| Analysis<br>methodology     | <b>CRT GLASS</b> in<br>anti-implosive<br>metal frames and<br>shadow masks                     | limit value = <b>2%</b>                                                                                                                                                 | Monthly on-site<br>analysis                                                                                                                  | Concerns<br>processes of<br>splitting of CRTs<br>and<br>crushing/shredding<br>of CRTs.                                                                                                                                                   |
|                             | CRT GLASS in<br>ferrous metal<br>fraction                                                     | limit value = <b>2%</b>                                                                                                                                                 | Monthly on-site<br>analysis                                                                                                                  | Concerns process<br>of<br>crushing/shredding<br>of CRT display<br>appliances.                                                                                                                                                            |
|                             | <b>CRT GLASS</b> in<br>crushed or<br>shredded mixed<br>fraction after CRT<br>glass separation | limit value = <b>2%</b>                                                                                                                                                 | Monthly on-site<br>analysis                                                                                                                  | Concerns process<br>of<br>crushing/shredding<br>of CRT display<br>appliances.<br>Mix fraction =<br>fraction after<br>crushing/shredding<br>and glass<br>separation<br>composed of metal<br>parts, plastics,<br>wood, deflection<br>coils |

| <b>CRT GLASS</b> in deflection coils fraction          | limit value = <b>4%</b>                                                                                                         | Monthly on-site<br>analysis                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CRT GLASS</b> in electron canons fraction           | limit value = <b>8%</b>                                                                                                         | Monthly on-site<br>analysis                                                                                                                                                                                                                                                      | For electron<br>canons, the<br>transparent glass<br>embedded in the<br>base of the electron<br>canon (usually<br>inside a plastic cap)<br>shall not be<br>considered for<br>analysis.                                                                                                                                                                                                                                                                                                                                                                                                 |
| SULPHUR in<br>cleaned<br>panel/mixed glass<br>fraction | limit value = 5 mg/kg<br>(dry matter)<br>(all five samples<br>randomly collected and<br>analysed shall meet the<br>limit value) | The number of<br>samples for<br>analysis per year<br>depends on the<br>mass of CRT<br>glass treated per<br>year as follows:Mass of<br>CRT glass<br>treated<br>per yearNumber<br>of<br>chemica<br>l<br>analysis< 7 500<br>tonnes17 500 to<br>15 000<br>tonnes2> 15 000<br>tonnes4 | Applicable in case<br>of chemical<br>analysis (the<br>chemical analysis<br>is the only<br>approach allowed<br>to be accepted by a<br>WEEELABEX<br>Auditor during a<br>validated batch<br>test).<br>Sulphur analysis in<br>panel glass fraction<br>is relevant for<br>processes of<br>splitting of CRT and<br>removal of<br>fluorescent<br>coatings by<br>vacuum cleaner.<br>Sulphur analysis in<br>mixed CRT glass<br>fraction (or panel<br>glass fraction if<br>available) is<br>relevant for<br>mechanical<br>processes of<br>cleaning CRT glass<br>in a dry or wet<br>environment. |

|  | FLUORESCENT<br>COATINGS on<br>panel glass | limit value = "no"<br>fluorescent coating<br>remains on the CRT<br>glass fraction (based<br>on visual inspection) | The number of<br>samples for<br>visual inspection<br>protocol per<br>year depends on<br>the mass of CRT<br>glass treated per<br>year as follows:Mass of<br>CRT glass<br>treated<br>per yearNumber<br>of visual<br>inspecti<br>on<br>protocol<br>sMass of<br>cRT glass<br>treated<br>per yearNumber<br> | Applicable in case<br>of visual inspection<br>protocol, i.e. only in<br>case of manual<br>splitting (incl.<br>cutting and hot<br>band) of CRT<br>followed by manual<br>removal of<br>fluorescent<br>coatings (the visual<br>inspection protocol<br>shall not be<br>accepted by a<br>WEEELABEX<br>Auditor during a<br>validated batch<br>test). |
|--|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | LEAD OXIDE in<br>separated panel<br>glass | limit value = 0,5wt% (by<br>weight)                                                                               | The number of<br>samples for<br>analysis per year<br>depends on the<br>mass of CRT<br>glass treated per<br>year as follows:Mass of<br>CRT glass<br>treated<br>per yearNumber<br>of<br>chemica<br>l<br>analysis< 7 500<br>tonnes17 500 to<br>15 000<br>tonnes2> 15 000<br>tonnes4                       | The "XRF"<br>measurement to<br>determine the<br>remaining PbO in<br>the separated<br>panel glass shall<br>not be accepted by<br>a WEEELABEX<br>Auditor during a<br>validated batch<br>test.                                                                                                                                                    |
|  | <b>BROMINE</b> in plastics fractions      | limit value = 2000 ppm                                                                                            | At least once per<br>year                                                                                                                                                                                                                                                                              | See the<br>WEEELABEX<br>Official Statement<br>2020_003 for<br>details.                                                                                                                                                                                                                                                                         |

# 3.4.2 De-pollution supplements, specifications and clarifications

# 3.4.2.1 Target value methodology

# **Capacitors:**

• Target value shall be calculated according to the CLC/TS 50625-3-1, clause 8.2 as specified in the WEEELABEX Official Statement 2016\_006.

- Electrolytic capacitors containing substances of concern shall be removed if they have height > 25 mm and diameter > 25 mm or proportionately similar volume = 12,27 cm<sup>3</sup> (Annex 1 shows couples of min. values "diameter-height" for electrolyte capacitors in scope).
- As per the WEEELABEX Official Statement 2016\_007 it is not required to remove capacitors with a "plastic casing" during the treatment/depollution process.

# 3.4.2.2 Mass Balance methodology

• Not applicable.

# 3.4.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-3.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by **laboratories approved** by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- Annex 4 summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

# Specifically:

- CRT GLASS in anti-implosive metal frames and shadow masks
  - o no supplements, specifications or clarifications
- CRT GLASS in crushed or shredded mixed fraction after CRT glass separation
  - o no supplements, specifications or clarifications
- CRT GLASS in deflection coils
  - o no supplements, specifications or clarifications
- CRT GLASS in electron canons
  - o no supplements, specifications or clarifications
- SULPHUR in cleaned panel/mixed glass
  - o no supplements, specifications or clarifications
- FLUORESCENT COATINGS on CRT glass
  - The "Visual inspection protocol" to determine the remaining fluorescent coatings on the CRT glass shall not be used by the WEEELABEX auditor during the validated Batch test. The auditor shall take samples and send them for the defined laboratory analysis at least every two years following the CENELEC TS50625-3-3 Annex CC.3 'Chemical analysis protocol'.

# • LEAD OXIDE in separated panel glass

- The **"XRF" measurement** to determine the remaining PbO in the separated panel glass shall not be used by the WEEELABEX auditor during the validated Batch test. The auditor shall take samples and send them for the defined laboratory analysis at least every two years following the CENELEC TS50625-3-3 Annex CC.3 'Chemical analysis protocol'.
- BROMINE in plastics fractions
  - Not applicable should be used only if the material is sent to incineration, for chemical conversion, or disposal.
  - One of the following possible scenarios shall be implemented to prove compliance with the de-pollution requirements related to brominated flame retardants in plastic fractions (see the WEEELABEX Official Statement 2020\_003 for details):

- SCENARIO 1) two laboratory analysis of a plastic sample (PREFERABLE SOLUTION):
  - one analysis for the TOTAL BROMINE concentration (limit value = 2000 ppm as per the CLC/TS 50625-3-1);
  - the second analysis for the RESTRICTED PBDEs (limit value = 1000 mg/kg as per the REGULATION (EU) 2019/1021).
- > SCENARIO 2) one laboratory analysis only for the RESTRICTED PBDEs:
  - if the result for RESTRICTED PBDEs is below 1000 mg/kg (compliant with the REGULATION (EU) 2019/1021) than such result can be assumed to be compliant with the CLC/TS 50625-3-1 as well (as the CLC/TS 50625-3-1 is aiming to remove the restricted PBDEs where the total Bromine is an indicator).
- > SCENARIO 3) one laboratory analysis only for the TOTAL BROMINE:
  - the WEEELABEX organisation does not defined any new limit value, however, as there is only limited evidence that the 2000 ppm total Bromine limit value is still suitable to confirm compliance with the up-dated REGULATION (EU) 2019/1021, the following scenario shall be applied:
    - if the result for total Bromine is below 1000 ppm than such result can be assumed to be compliant with the REGULATION (EU) 2019/1021 as it can be assumed that the concentration of restricted PBDEs is below 1000 mg/kg as well; however, data confirming this statement shall be continuously collected;
    - if the result for total Bromine is higher than 1000 ppm then an additional analysis of the restricted PBDEs shall be carried out to confirm (or not) compliance with the REGULATION (EU) 2019/1021.
  - NOTE: if there is a proven evidence in a country or region (based on sufficient analysis results) that a different value for the total Bromine can be used as a more suitable indicator confirming compliance with the REGULATION (EU) 2019/1021 then such value may be used instead of the mentioned 1000 ppm.

# 3.5 FLAT PANEL DISPLAY EQUIPMENT

# 3.5.1 Summary of de-pollution target values and limit values

| FLAT PANEL                  | . DISPLAY EQUI                                                                            | PMENT                                                                                                           |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | PARAMETER TO<br>BE EVALUATED                                                              | TARGET VALUE /<br>LIMIT VALUE                                                                                   | FREQUENCY                                                                                                                          | NOTE                                                                                                                                                                                                                                                                                                                                                                                              |
| Target value methodology    | Not applicable                                                                            | -                                                                                                               | -                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mass Balance<br>methodology | INTACT<br>BACKLIGHT<br>LAMPS that are<br>not broken during<br>manual treatment<br>process | target value = 95wt%<br>(minimum percentage<br>of intact backlight<br>lamps that are not<br>broken - by weight) | At least once per<br>year                                                                                                          | Applicable for<br>manual treatment<br>only.                                                                                                                                                                                                                                                                                                                                                       |
|                             | AIR FILTRATION<br>EFFICIENCY                                                              | target value = 95%<br>(minimum percentage<br>of the process air<br>filtration efficiency)                       | The air filtration<br>efficiency shall<br>be monitored on<br>a regular basis<br>(at least once<br>per year)                        | Applicable for<br>mechanical<br>treatment only.<br>Concerns mass<br>flow of mercury in<br>process air before<br>and after the<br>filtration system.                                                                                                                                                                                                                                               |
| Analysis<br>methodology     | MERCURY in depolluted physically smallest shredded mixed fraction                         | limit value = 0,5 mg/kg<br>(dry matter)                                                                         | At least once per<br>year                                                                                                          | Applicable for<br>mechanical<br>treatment only.<br>If mechanical<br>treatment process<br>of FPDs includes a<br>step of screening to<br>maximum 5 mm<br>size, only the fine<br>part shall be<br>sampled and<br>analysed<br>(otherwise the<br>fraction collected<br>shall be sieved to a<br>maximum of 5 mm<br>at the time of the<br>sampling procedure<br>before being sent<br>to the laboratory). |
|                             | MERCURY in air<br>emissions                                                               | limit values = as<br>defined by applicable<br>laws                                                              | As defined by<br>local legislation<br>and permitting<br>conditions of the<br>treatment<br>operator<br>(continuous<br>monitoring of | Applicable for<br>manual and<br>mechanical<br>treatment<br>processes.                                                                                                                                                                                                                                                                                                                             |

|  |                                      |                                                    | mercury<br>emissions from<br>the air filtration<br>system is<br>preferred)                                                                                               |                                                                        |
|--|--------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|  | MERCURY in ambient air               | limit values = as<br>defined by applicable<br>laws | As defined by<br>local legislation<br>and permitting<br>conditions of the<br>treatment<br>operator<br>(ambient air<br>shall be<br>monitored on a<br>continuous<br>basis) | Applicable for<br>manual and<br>mechanical<br>treatment<br>processes.  |
|  | <b>BROMINE</b> in plastics fractions | limit value <b>= 2000 ppm</b>                      | At least once per<br>year                                                                                                                                                | See the<br>WEEELABEX<br>Official Statement<br>2020_003 for<br>details. |

# 3.5.2 De-pollution supplements, specifications and clarifications

#### 3.5.2.1 Target value methodology

• Not applicable.

#### 3.5.2.2 Mass Balance methodology

#### INTACT BACKLIGHT LAMPS that are not broken during manual treatment process:

- As per the CLC/TS 50625-3-3, the target value is defined as a **minimum percentage of intact backlight lamps that are not broken** during manual treatment process = 95%.
- The target value is defined for "**pure**" **backlight lamps**, i.e. without any plastic/metal parts that are usually attached to the backlight lamps especially in the PC monitors (see the **Picture 3.5.2.2**)
- The Auditor shall consider the fact that it can be extremely difficult to separate and weigh pure backlight lamps without plastic/metal parts as the lamps may be broken during the separation process. If the pure backlight lamps cannot be separated without any risk of damage or breakage, the Auditor shall not separate them, however, shall weigh the lamps including the plastic/metal parts. However, in such situation, the Auditor shall take the weight of the plastic/metal parts into consideration and thus shall deduct the estimated weight from the "Total mass of intact lamps" (parameter "I") and from the "Total mass of lamps broken by the treatment operator" (parameter "B") as per the best available estimation.

Picture 3.5.2.2: Backlight lamps including plastic/metal parts and covers:



#### AIR FILTRATION EFFICIENCY:

• no supplements, specifications or clarifications

#### 3.5.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-3.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by **laboratories approved** by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- Annex 4 summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

#### Specifically:

- MERCURY in physically smallest shredded mixed fraction
  - applicable for mechanical treatment only
  - o no supplements, specifications or clarifications
- MERCURY in air emissions
  - o applicable for manual and mechanical treatment processes
  - o no supplements, specifications or clarifications
- **BROMINE** in plastics fractions
  - Not applicable should be used only if the material is sent to incineration, for chemical conversion, or disposal.
  - One of the following possible scenarios shall be implemented to prove compliance with the de-pollution requirements related to brominated flame retardants in plastic fractions (see the WEEELABEX Official Statement 2020\_003 for details):
    - SCENARIO 1) two laboratory analysis of a plastic sample (PREFERABLE SOLUTION):

- one analysis for the TOTAL BROMINE concentration (limit value = 2000 ppm as per the CLC/TS 50625-3-1);
- the second analysis for the RESTRICTED PBDEs (limit value = 1000 mg/kg as per the REGULATION (EU) 2019/1021).
- > SCENARIO 2) one laboratory analysis only for the RESTRICTED PBDEs:
  - if the result for RESTRICTED PBDEs is below 1000 mg/kg (compliant with the REGULATION (EU) 2019/1021) than such result can be assumed to be compliant with the CLC/TS 50625-3-1 as well (as the CLC/TS 50625-3-1 is aiming to remove the restricted PBDEs where the total Bromine is an indicator).
- > SCENARIO 3) one laboratory analysis only for the TOTAL BROMINE:
  - the WEEELABEX organisation does not defined any new limit value, however, as there is only limited evidence that the 2000 ppm total Bromine limit value is still suitable to confirm compliance with the up-dated REGULATION (EU) 2019/1021, the following scenario shall be applied:
    - if the result for total Bromine is below 1000 ppm than such result can be assumed to be compliant with the REGULATION (EU) 2019/1021 as it can be assumed that the concentration of restricted PBDEs is below 1000 mg/kg as well; however, data confirming this statement shall be continuously collected;
    - if the result for total Bromine is higher than 1000 ppm then an additional analysis of the restricted PBDEs shall be carried out to confirm (or not) compliance with the REGULATION (EU) 2019/1021.
  - NOTE: if there is a proven evidence in a country or region (based on sufficient analysis results) that a different value for the total Bromine can be used as a more suitable indicator confirming compliance with the REGULATION (EU) 2019/1021 then such value may be used instead of the mentioned 1000 ppm.

# 3.6 GAS DISCHARGE LAMPS

# 3.6.1 Summary of de-pollution target values and limit values

| GAS DISCHA                  | ARGE LAMPS                                                          |                                                           |                                                                                                                                                               |      |
|-----------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                             | PARAMETER TO<br>BE EVALUATED                                        | TARGET VALUE /<br>LIMIT VALUE                             | FREQUENCY                                                                                                                                                     | NOTE |
| Target value methodology    | Not applicable                                                      | -                                                         | -                                                                                                                                                             | -    |
| Mass Balance<br>methodology | Not applicable                                                      | -                                                         | -                                                                                                                                                             | -    |
| Analysis<br>methodology     | MERCURY in glass fractions                                          | limit value = <b>10 mg/kg</b><br>(dry matter)             | The number of<br>samples for<br>analysis<br>depends on the<br>amount of lamps<br>treated per year<br>as follows:<br>= 1 sample per                            | -    |
|                             | <b>MERCURY</b> in<br>metal and mixed<br>metal plastics<br>fractions | limit value = <b>100 mg/kg</b>                            | year for < 500 t<br>of lamps treated<br>per year;<br>= 1 sample every<br>6 months for<br>> 500 t lamps<br>treated per year                                    | -    |
|                             | MERCURY<br>concentration in<br>Ambient Air                          | limit values = <b>as</b><br>defined by applicable<br>laws | Weekly (by a<br>calibrated<br>measurement<br>device);<br>For offices (non-<br>plant area)<br>according to the<br>risk assessment,<br>but at least<br>annually | -    |
|                             | MERCURY<br>concentration in<br>Air and Water                        | limit values = <b>as</b><br>defined by applicable<br>laws | According to the<br>risk assessment,<br>but at least<br>annually                                                                                              | -    |

# 3.6.2 De-pollution supplements, specifications and clarifications

# 3.6.2.1 Target value methodology

• Not applicable.

## 3.6.2.2 Mass Balance methodology

• Not applicable.

# 3.6.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-2.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by laboratories approved by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- **Annex 4** summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

#### Specifically:

- MERCURY in physically smallest shredded mixed fraction
  - applicable for mechanical treatment only
  - no supplements, specifications or clarifications
- MERCURY in air emissions
  - o applicable for manual and mechanical treatment processes
  - o no supplements, specifications or clarifications
- **BROMINE** in plastics fractions
  - Not applicable should be used only if the material is sent to incineration, for chemical conversion, or disposal.
  - One of the following possible scenarios shall be implemented to prove compliance with the de-pollution requirements related to brominated flame retardants in plastic fractions (see the WEEELABEX Official Statement 2020\_003 for details):
    - SCENARIO 1) two laboratory analysis of a plastic sample (PREFERABLE SOLUTION):
      - one analysis for the TOTAL BROMINE concentration (limit value = 2000 ppm as per the CLC/TS 50625-3-1);
      - the second analysis for the RESTRICTED PBDEs (limit value = 1000 mg/kg as per the REGULATION (EU) 2019/1021).
    - > SCENARIO 2) one laboratory analysis only for the RESTRICTED PBDEs:
      - if the result for RESTRICTED PBDEs is below 1000 mg/kg (compliant with the REGULATION (EU) 2019/1021) than such result can be assumed to be compliant with the CLC/TS 50625-3-1 as well (as the CLC/TS 50625-3-1 is aiming to remove the restricted PBDEs where the total Bromine is an indicator).
    - > SCENARIO 3) one laboratory analysis only for the TOTAL BROMINE:
      - the WEEELABEX organisation does not defined any new limit value, however, as there is only limited evidence that the 2000 ppm total Bromine limit value is still suitable to confirm compliance with the up-dated REGULATION (EU) 2019/1021, the following scenario shall be applied:
        - if the result for total Bromine is below 1000 ppm than such result can be assumed to be compliant with the REGULATION (EU) 2019/1021 as it can be assumed that the concentration of restricted PBDEs is below 1000 mg/kg as well; however, data confirming this statement shall be continuously collected;

- if the result for total Bromine is higher than 1000 ppm then an additional analysis of the restricted PBDEs shall be carried out to confirm (or not) compliance with the REGULATION (EU) 2019/1021.
- NOTE: if there is a proven evidence in a country or region (based on sufficient analysis results) that a different value for the total Bromine can be used as a more suitable indicator confirming compliance with the REGULATION (EU) 2019/1021 then such value may be used instead of the mentioned 1000 ppm.

# 3.7 PHOTOVOLTAIC PANELS

# 3.7.1 Summary of de-pollution target values and limit values

| PHOTOVOLTAIC PANELS         |                                                                                                          |                                                |                                                                                                                                            |                                                                               |
|-----------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                             | PARAMETER TO<br>BE EVALUATED                                                                             | TARGET VALUE /<br>LIMIT VALUE                  | FREQUENCY                                                                                                                                  | NOTE                                                                          |
| Target value methodology    | Not applicable                                                                                           | -                                              | -                                                                                                                                          | -                                                                             |
| Mass Balance<br>methodology | Not applicable                                                                                           | -                                              | -                                                                                                                                          | -                                                                             |
| Analysis<br>methodology     | <b>LEAD</b> in glass<br>fractions from<br>treatment of<br>silicon based<br>photovoltaic<br>panels        | limit value = <b>100 mg/kg</b><br>(dry matter) | The number of<br>samples for<br>analysis<br>depends on the<br>amount of<br>photovoltaic                                                    | Applicable for the treatment of <u>silicon</u> based photovoltaic panels.     |
|                             | <b>CADMIUM</b> in<br>glass fractions<br>from treatment of<br>silicon based<br>photovoltaic<br>panels     | limit value = 1 mg/kg<br>(dry matter)          | ,<br>per year as<br>follows:<br>= 1 sample per<br>year for < 1 000 t<br>of photovoltaic<br>panels treated<br>per year;<br>= 1 sample every | Applicable for the treatment of <u>silicon</u> based photovoltaic panels.     |
|                             | <b>SELENIUM</b> in<br>glass fractions<br>from treatment of<br>silicon based<br>photovoltaic<br>panels    | limit value = 1 mg/kg<br>(dry matter)          | 6 months for<br>1 000 - 10 000 t<br>of photovoltaic<br>panels treated<br>per year;<br>= 1 sample<br>quarterly for ><br>10 000 t of         | Applicable for the treatment of <u>silicon</u> based photovoltaic panels.     |
|                             | <b>LEAD</b> in glass<br>fractions from<br>treatment of non-<br>silicon based<br>photovoltaic<br>panels   | limit value = <b>100 mg/kg</b><br>(dry matter) | photovoltaic<br>panels treated<br>per year.                                                                                                | Applicable for the treatment of <u>non-silicon</u> based photovoltaic panels. |
|                             | <b>CADMIUM</b> in<br>glass fractions<br>from treatment of<br>non-silicon based<br>photovoltaic<br>panels | limit value = <b>10 mg/kg</b><br>(dry matter)  |                                                                                                                                            | Applicable for the treatment of <u>non-silicon</u> based photovoltaic panels. |
|                             | SELENIUM in<br>glass fractions<br>from treatment of<br>non-silicon based<br>photovoltaic<br>panels       | limit value = <b>10 mg/kg</b><br>(dry matter)  |                                                                                                                                            | Applicable for the treatment of <u>non-silicon</u> based photovoltaic panels. |

A10 WEEELABEX De-pollution monitoring specification - REV 02 version 1 – 5<sup>th</sup> November 2020

# 3.7.2 De-pollution supplements, specifications and clarifications

## 3.7.2.1 Target value methodology

• Not applicable.

# 3.7.2.2 Mass Balance methodology

• Not applicable.

# 3.7.2.3 Analysis methodology

#### In general:

- Sampling and analysis procedures shall follow the CLC/TS 50625-3-5.
- WEEELABEX Official Statement 2018\_001 specifies requirements related to the sampling of fractions to be analysed (either by a laboratory or via an on-site handpicking analysis), including requested sampling documentation and records.
- It is required to complete a **SAMPLING PROTOCOL** for each sample taken (**Annex 2a** shows a SAMPLING PROTOCOL example). The **Annex 2b** shows an example of a **SAMPLE LABEL**.
- Samples intended for laboratory analysis shall be analysed by **laboratories approved** by the WEEELABEX Organisation (a list of approved laboratories is provided by the WEEELABEX Organisation).
- Annex 3 gives examples of sampling equipment and tools.
- Annex 4 summarizes in detail **analytical methods** to be followed by laboratories (as extracted from the relevant Technical Specifications).

#### Specifically:

- LEAD in glass fractions from treatment of silicon based photovoltaic panels
  - applicable for the treatment of <u>silicon</u> based photovoltaic panels
  - o no supplements, specifications or clarifications
- CADMIUM in glass fractions from treatment of silicon based photovoltaic panels
  - o applicable for the treatment of silicon based photovoltaic panels
    - o no supplements, specifications or clarifications
- SELENIUM in glass fractions from treatment of silicon based photovoltaic panels
  - o applicable for the treatment of silicon based photovoltaic panels
  - o no supplements, specifications or clarifications
- LEAD in glass fractions from treatment of non-silicon based photovoltaic panels
  - o applicable for the treatment of non-silicon based photovoltaic panels
    - o no supplements, specifications or clarifications
- CADMIUM in glass fractions from treatment of non-silicon based photovoltaic panels
  - o applicable for the treatment of non-silicon based photovoltaic panels
  - o no supplements, specifications or clarifications
- SELENIUM in glass fractions from treatment of non-silicon based photovoltaic panels
  - $\circ$  applicable for the treatment of  $\underline{\text{non-silicon}}$  based photovoltaic panels
  - o no supplements, specifications or clarifications

| Diameter | Height  | Volume     |
|----------|---------|------------|
| 1,1 cm   | 12,9 cm | 12,272 cm3 |
| 1,2 cm   | 10,9 cm | 12,272 cm3 |
| 1,3 cm   | 9,2 cm  | 12,272 cm3 |
| 1,4 cm   | 8,0 cm  | 12,272 cm3 |
| 1,5 cm   | 6,9 cm  | 12,272 cm3 |
| 1,6 cm   | 6,1 cm  | 12,272 cm3 |
| 1,7 cm   | 5,4 cm  | 12,272 cm3 |
| 1,8 cm   | 4,8 cm  | 12,272 cm3 |
| 1,9 cm   | 4,3 cm  | 12,272 cm3 |
| 2,0 cm   | 3,9 cm  | 12,272 cm3 |
| 2,1 cm   | 3,5 cm  | 12,272 cm3 |
| 2,2 cm   | 3,2 cm  | 12,272 cm3 |
| 2,3 cm   | 3,0 cm  | 12,272 cm3 |
| 2,4 cm   | 2,7 cm  | 12,272 cm3 |
| 2,5 cm   | 2,5 cm  | 12,272 cm3 |
| 2,6 cm   | 2,3 cm  | 12,272 cm3 |
| 2,7 cm   | 2,1 cm  | 12,272 cm3 |
| 2,8 cm   | 2,0 cm  | 12,272 cm3 |
| 2,9 cm   | 1,9 cm  | 12,272 cm3 |
| 3,0 cm   | 1,7 cm  | 12,272 cm3 |
| 3,1 cm   | 1,6 cm  | 12,272 cm3 |
| 4,1 cm   | 0,9 cm  | 12,272 cm3 |
| 5,1 cm   | 0,6 cm  | 12,272 cm3 |
| 6,1 cm   | 0,4 cm  | 12,272 cm3 |
| 7,1 cm   | 0,3 cm  | 12,272 cm3 |

Annex 1: Couples of min. values "diameter-height" for electrolyte capacitors in scope

# Annex 2a: SAMPLING PROTOCOL example

| BATCH / PERFORMA                                 | BATCH / PERFORMANCE TEST IDENTIFICATION:                                                                                                                                                                                                                                                      |                                                                                  |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
| Name of audited company:                         | OPERATOR A (hereinafter as "Operator")                                                                                                                                                                                                                                                        |                                                                                  |  |  |  |
| Audit location:                                  | Street, Town, Country                                                                                                                                                                                                                                                                         |                                                                                  |  |  |  |
| Audit scope and WEEE stream related              | Temperature exchange equipment stre<br>– WEEELABEX CFA performance test – S                                                                                                                                                                                                                   | am:<br>STEP 2                                                                    |  |  |  |
| Audit date and time:                             | 5 – 7 December 2018                                                                                                                                                                                                                                                                           | The start: 5 December 2018; 8.00                                                 |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                                               | The end: 7 December 2018; 17.00                                                  |  |  |  |
| SAMPLE IDENTIFICA                                | TION:                                                                                                                                                                                                                                                                                         |                                                                                  |  |  |  |
| Output fraction name:                            |                                                                                                                                                                                                                                                                                               |                                                                                  |  |  |  |
| SAMPLE INFORMAT                                  | ION:                                                                                                                                                                                                                                                                                          |                                                                                  |  |  |  |
| Sample identification number:                    | - CFA/PU/OPERATOR A/03; CFA/PU/OP<br>- CFA/PUIMP/OPERATOR A/04; CFA/PU<br>- CFA/PUWATER/OPERATOR A/05; CFA                                                                                                                                                                                    | PERATOR A/03_spare;<br>JIMP/OPERATOR A/04_spare;<br>/PUWATER/OPERATOR A/05_spare |  |  |  |
| Sampling date and time:                          | 7 December 2018                                                                                                                                                                                                                                                                               | 10.30                                                                            |  |  |  |
| Sampling place:                                  | Outside the treatment hall no. 2 (under                                                                                                                                                                                                                                                       | r a weatherproof shelter).                                                       |  |  |  |
| Conditions during the sampling:                  | Dry, temperature around 15°C.                                                                                                                                                                                                                                                                 |                                                                                  |  |  |  |
| Sample description:                              | The PU fraction is the cleaned PU from the temperature exchange equipment after STEP 2 process including plastic and metallic impurities and including water content.                                                                                                                         |                                                                                  |  |  |  |
| Sample size and packaging:                       | 500 ml (each sample) / plastic bags sealed with aluminium tape                                                                                                                                                                                                                                |                                                                                  |  |  |  |
| Sampling procedure:                              | Sampling procedure compliant with the CLC/TS 50625-3-4                                                                                                                                                                                                                                        |                                                                                  |  |  |  |
| Notes:                                           | No notes.                                                                                                                                                                                                                                                                                     |                                                                                  |  |  |  |
| SAMPLING PARTICI                                 | PANT(S):                                                                                                                                                                                                                                                                                      |                                                                                  |  |  |  |
|                                                  | Sampler A                                                                                                                                                                                                                                                                                     | Signature:                                                                       |  |  |  |
| Name of sampler(s):                              | Sampler B                                                                                                                                                                                                                                                                                     | Signature:                                                                       |  |  |  |
| Laboratory:                                      |                                                                                                                                                                                                                                                                                               |                                                                                  |  |  |  |
| Laboratory name:                                 | Laboratory A, Country (CFA/PU/OPERATOR A/03; CFA/PUIMP/OPERATOR A/04)<br>Laboratory B, Country (CFA/PUWATER/OPERATOR A/05)                                                                                                                                                                    |                                                                                  |  |  |  |
| Date of sending of the sample to the laboratory: | 8 December 2018                                                                                                                                                                                                                                                                               |                                                                                  |  |  |  |
| Required analysis:                               | VFC and VHC in the PU fraction (according to the CLC/TS 50625-3-4)<br>Determination of plastic and metallic impurities in the PU fraction (according to the<br>CLC/TS 50625-3-4)<br>Determination of water content in the PU fraction (gravimetric method according ISO<br>11465 or EN 14346) |                                                                                  |  |  |  |

# Annex 3b: SAMPLE LABELING example

| Sample ID: CFA/PU/OPR_A/03<br>Sample description: POLYURETHANE FRACTION | Sample ID: CFA/PU/OPR_A/03_SPARE<br>Sample description: POLYURETHANE FRACTION |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Operator:                                                               | Operator:                                                                     |
| Sampler:                                                                | Sampler:                                                                      |
| Date/Time:                                                              | Date/Time:                                                                    |
| Analysis: VFC and VHC in the PU fraction (according CLC/TS 50625-3-4)   | Analysis: VFC and VHC in the PU fraction (according CLC/TS 50625-3-4)         |

Т

## Annex 4: Examples of sampling equipment and tools

Portable and folding quartering cross to be used for homogenization and reduction of a sample:



Portable sieve for sieving physically smallest non-metallic mechanical treatment fraction produced by the process in case of particles size over 5mm:



A10 WEEELABEX De-pollution monitoring specification - REV 02 version 1 – 5<sup>th</sup> November 2020

Aluminium tape (or another gas tight tape) to prevent gas leakage from a sample in a plastic bag (applicable e.g. for PU fractions):



Paraffine tape to prevent gas leakage from a sample in a glass (applicable e.g. for Oil and VFC)



| WEEE<br>Stream                                                             | Type of<br>analysis                                                                         | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                      |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Large<br>appliances<br>/ Mixed<br>equipment                                | PCB in<br>physically<br>smallest<br>non-metallic<br>mechanical<br>treatment<br>fraction     | <ul> <li>Method description as per the standard CLC/TS 50625-3-1 (Clause 4.4):</li> <li>The preparation of the test portion of the sample to be analysed shall be carried out according to EN 15002 and then:</li> <li>for PCB, the digestion (e.g. homogenization) of the sample and the subsequent analysis shall be carried out in accordance with EN 15308 or US EPA 8082A/2007, quantification of PCBs as congeners.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        | Sample<br>volume = ca<br>1 litre              |
| Large<br>appliances<br>/ Mixed<br>equipment                                | Cadmium in<br>physically<br>smallest<br>non-metallic<br>mechanical<br>treatment<br>fraction | <ul> <li>Method description as per the standard CLC/TS 50625-3-1 (Clause 4.4):</li> <li>The preparation of the test portion of the sample to be analysed shall be carried out according to EN 15002 and then:</li> <li>for cadmium, the digestion of the sample and the subsequent analysis shall be carried out by ICP-OES or ICP-MS according to IEC 62321-5. As an alternative the digestion shall be carried out according to EN 13656 and the subsequent analysis performed according to EN ISO 11885 or the EN ISO 17294 series.</li> <li>NOTE 4 ICP-OES is an abbreviation for Inductively Coupled Plasma/Optical Emission Spectrometry and ICP-MS is an abbreviation for Inductively Coupled Plasma Mass Spectrometry, which are the two methods of chemical analysis to be used when analysing cadmium.</li> </ul> | Sample<br>volume = ca<br>1 litre              |
| Mixed<br>equipment<br>/ Flat panel<br>displays /<br>Flat panel<br>displays | Bromine in<br>plastic<br>fraction                                                           | <ul> <li>Method description as per the standard CLC/TS 50625-3-1 (Clause 4.4):</li> <li>The preparation of the test portion of the sample to be analyzed shall be carried out according to EN 15002 and then:</li> <li>for bromine, the digestion of the sample and the subsequent analysis shall be carried out in accordance with EN 14582.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample<br>volume = ca<br>12 litres or<br>less |

# Annex 5: Analytical methods to be used by accredited laboratories for the analysis of samples

| WEEE                  | Type of     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|-----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Stream                | analysis    | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments    |
| Temperatu             | Residual    | Method description as per the standard CLC/TS 50625-3-4 (Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample      |
| re                    | refrigerant | CC.3):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | volume = ca |
| exchange<br>equipment | in oil      | Determination of residual refrigerant in oil – METHOD 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 ml      |
|                       |             | <ul> <li>Analysis:<br/>Before the laboratory analysis, the oil samples need an ice/water cooling bath<br/>for 1 h.</li> <li>A sample of oil is weighted (1-2 g) in a gastight 40ml vessel and VFCs and VHCs<br/>are extracted/solved in 10 ml of Diacetone Alcohol (4-hydroxy-4-methyl-<br/>pentan-2-one, CAS. 123-42-2) for a night at room<br/>temperature, without stirring.</li> <li>After the extraction/solubilization, 1 ml of Diacetone alcohol is diluted in 9 ml<br/>of water in a 20 ml headspace vial. A sample of the gas in the headspace is<br/>injected into a GC-MS instrument. The GC-MS analysis of the head-space<br/>sample is suitable for the determination of the compounds at low<br/>concentration, such as Freon-11 and traces of other CFCs. Gas-chromatography<br/>(GC) equipped with a flame ionization detector (FID) and double column is<br/>preferred for compounds at high concentrations (Freon-12).</li> <li>Analysis Repetition:</li> <li>The analyses are repeated twice for each sample and the analysis report shall<br/>show the two sets of non-duplicate values, avoiding the average.</li> <li>As a minimum R12, R22, R134a and R600a will be detected.</li> <li>Chromatographic Settings:</li> <li>The chromatographic column: capillary column specific for the<br/>determination of volatile organic pollutants, particularly for<br/>chlorofluorinated pollutants;</li> <li>advised thermal profile: plateau at 35 °C for 3 min followed by a 7<br/>°C/min thermal ramp until 110 °C (at the end of the analysis, a cleaning<br/>process at a high temperature depending on the column model is<br/>needed);</li> <li>Gas-transport flux and pressure: gas-transport flux and pressure shall<br/>guarantee good resolution and separation of the chromatographic<br/>peaks; gas-transport flux and pressure shall avoid the overlap<br/>chromatographic peaks on other peaks.</li> <li>The chromatograms should be available for two years after the analysis. In<br/>chromatograms, the peaks of all components, as listed above, and internal<br/>standard (eventually unknown) should be clearly identified.</li> </ul> |             |

| WEEE                                     | Type of                                                                                                            | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commonto                            |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Stream                                   | analysis                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments                            |
| Temperatu<br>re<br>exchange<br>equipment | Chemical<br>composition<br>of the<br>output<br>refrigerants<br>(VFCs/VHCs)<br>from the<br>step 1<br>treatment      | Method description as per the standard CLC/TS 50625-3-4 (Annex<br>DD.3):Determination of chemical composition of the output refrigerants<br>(VFCs/VHCs) from the step 1 treatment:Direct determination of R12, R22, R134a, R600a, R290 and oil using the<br>following method:<br>The relative amount of VFCs and VHCs in the liquid refrigerant phase shall be<br>determined using gas chromatography or infrared spectroscopy. The types of<br>VFCs and VHCs identified and their respective percentage mass fractions shall<br>be documented.                                                    | Sample<br>volume = ca<br>10 - 20 ml |
| Temperatu<br>re<br>exchange<br>equipment | Chemical<br>composition<br>of the<br>output<br>blowing<br>agents<br>(VFCs/VHCs)<br>from the<br>step 2<br>treatment | Method description as per the standard CLC/TS 50625-3-4 (Annex DD.4):<br>Determination of chemical composition of the output blowing agents (VFCs/VHCs) from the step 2 treatment:<br>Direct determination of R11, R12, R141b and Cyclo-Pentane, N-Pentane as well as Iso-Pentane using the following method:<br>The relative amount of VFCs and VHCs in the liquid blowing agent phase (exclusive water content) shall be determined using gas chromatography or infrared spectroscopy. The types of VFCs and VHCs identified and their respective percentage mass fractions shall be documented. | Sample<br>volume = ca<br>10 - 20 ml |

| WEEE      | Type of     | Description of the Analysis                                                      | Comments     |
|-----------|-------------|----------------------------------------------------------------------------------|--------------|
| Stream    | analysis    |                                                                                  | Comments     |
| Temperatu | Residual    | Method description as per the standard CLC/TS 50625-3-4 (Annex                   | Sample       |
| re        | VFC and     | EE.2):                                                                           | volume = ca  |
| exchange  | VHC in      |                                                                                  | 100 – 750 ml |
| equipment | polyurethan | Determination of residual VFC and VHC in polyurethane fraction - METHOD 1        |              |
|           | e fraction  | Propagation for Analysis in the Laboratory                                       |              |
|           |             | Phase separation: not necessary                                                  |              |
|           |             | Drying: not necessary and not applicable for the analyse but the water           |              |
|           |             | content should be determined on a distinct subsample                             |              |
|           |             | Homogenization and sub sampling: mechanical homogenization using                 |              |
|           |             | cryogenic grinding in order to obtain a test portion of 3 to 6 g as a subsample. |              |
|           |             | NOTE 2 Homogenization without using nitrogen would cause VFC losses.             |              |
|           |             | Analysis:                                                                        |              |
|           |             | At the analysis laboratory, a sample of the polyurethane matrix is weighted (3   |              |
|           |             | Polyurethane matrix in 50 ml of ultranure Methanol for a night at 20 °C room     |              |
|           |             | temperature without stirring.                                                    |              |
|           |             | After the extraction, 1 ml of methanol is diluted in 9 ml of water in a 20 ml    |              |
|           |             | headspace vial. A sample of the gas in the headspace is injected into a GC-MS    |              |
|           |             | instrument. Gas-chromatography (GC) equipped with a flame ionization             |              |
|           |             | concentrations (Freon-11)                                                        |              |
|           |             | Analysis Repetition:                                                             |              |
|           |             | The analysis repetition on several specimens from the same plant is needed in    |              |
|           |             | order to obtain a precise evaluation of the residual VFC and VHC content in the  |              |
|           |             | Polyurethane matrix.                                                             |              |
|           |             | the laboratory analysis shall be done from the centre of the briquette: 3        |              |
|           |             | specimens are needed also for pellet plant and for powder plants sampling is     |              |
|           |             | obtained by quartering.                                                          |              |
|           |             | As a minimum R11, R141b, cyclopentane and isopentane are analysed.               |              |
|           |             | Chromatographic Settings:                                                        |              |
|           |             | - Chromatographic column: capillary column specific for the                      |              |
|           |             | determination of volatile organic pollutants, particularly for                   |              |
|           |             | chlorofluorinated pollutants;                                                    |              |
|           |             | - Advised thermal profile: plateau at 35 °C for 3 min followed by a 7            |              |
|           |             | °C/min thermal ramp until 110 °C (at the end of the analysis, a cleaning         |              |
|           |             | process at a high temperature depending on the column model is needed)           |              |
|           |             | - Gas-transport flux and pressure: gas-transport flux and pressure shall         |              |
|           |             | guarantee good resolution and separation (at least 0,8 min) of the               |              |
|           |             | chromatographic peaks corresponding to all components, as listed                 |              |
|           |             | above, gas-transport flux and pressure shall avoid the overlap of their          |              |
|           |             | - The calibration is obtained by the internal standard method, i.e. a            |              |
|           |             | response factor is determined by a calibration curve determined with             |              |
|           |             | three known-concentration samples of each of the above mentioned                 |              |
|           |             | components and the internal standard (the internal standard should be            |              |
|           |             | a chemical compound similar to Freon-11 and Freon-12, its                        |              |
|           |             | chromatographic peak should not overlap the Freon-11 and Freon-12                |              |
|           |             | mixture.                                                                         |              |
|           |             | The chromatograms shall be available for two years after the analysis. In        |              |
|           |             | chromatograms, the peaks of the above mentioned components and internal          |              |
|           |             | standard (eventually unknown) should be clearly identified.                      |              |

| WEEE      | Type of     | Description of the Analysis                                                     | Comments     |
|-----------|-------------|---------------------------------------------------------------------------------|--------------|
| Stream    | analysis    |                                                                                 | comments     |
| Temperatu | Residual    | Method description as per the standard CLC/TS 50625-3-4 (Annex                  | Sample       |
| re        | VFC and     | EE.3):                                                                          | volume = ca  |
| exchange  | VHC in      |                                                                                 | 100 – 750 ml |
| equipment | polyurethan | Determination of residual VFC and VHC in polyurethane fraction - METHOD 2       |              |
|           | ofraction   | Preparation for Analysis in the Laboratory:                                     |              |
|           | erraction   | Phase separation: not necessary                                                 |              |
|           |             | Drying: not necessary and not applicable for the analyse but the water          |              |
|           |             | content should be determined on a distinct subsample                            |              |
|           |             | Homogenization and sub sampling: mechanical homogenization using                |              |
|           |             | NOTE 1 Drying would cause VFC losses.                                           |              |
|           |             | NOTE 2 Homogenization without using nitrogen would cause VFC losses.            |              |
|           |             | At the analysis laboratory a sample of the polyurethane matrix is weighted (3   |              |
|           |             | g to 6 g). In a gastight 60 ml vessel. VFCs and VHCs are extracted from         |              |
|           |             | polyurethane matrix in 50 ml of ultrapure Methanol for a night at room          |              |
|           |             | temperature without stirring. After the extraction, 1 ml of Methanol is diluted |              |
|           |             | in 9 ml of water in a 20 ml headspace vial. A sample of the gas in the          |              |
|           |             | headspace is injected into a GC-MS instrument. The GC-MS analysis of the        |              |
|           |             | head-space sample is suitable for the determination of the compounds at low     |              |
|           |             | (GC) equipped with a flame ionization detector (FID) and double column is       |              |
|           |             | preferred for compounds at high concentrations (Freon-11)                       |              |
|           |             | Analysis Repetition:                                                            |              |
|           |             | The analysis repetition on several specimens from the same plant is needed in   |              |
|           |             | order to obtain a precise evaluation of the residual VFC and VHC content in the |              |
|           |             | Polyurethane matrix.                                                            |              |
|           |             | Particularly, 3 specimens are needed for briquette plants and sampling during   |              |
|           |             | the laboratory analysis shall be done from the centre of the briquette; 3       |              |
|           |             | obtained by quartering                                                          |              |
|           |             | Chromatographic Settings:                                                       |              |
|           |             | The chromatographic analyses are recorded under the follow instructions:        |              |
|           |             | - chromatographic column: capillary column specific for the                     |              |
|           |             | determination of volatile organic pollutants, particularly for                  |              |
|           |             | chlorofluorinated pollutants;                                                   |              |
|           |             | - advised thermal profile: plateau at 35 °C for 3 min followed by a 7           |              |
|           |             | C/min thermal ramp until 110°C (at the end of the analysis, a cleaning          |              |
|           |             | needed):                                                                        |              |
|           |             | - gas-transport flux and pressure: gas-transport flux and pressure shall        |              |
|           |             | guarantee good resolution and separation (at least 0,8 min) of the              |              |
|           |             | chromatographic peaks corresponding to the components, as listed                |              |
|           |             | above; gas-transport flux and pressure shall avoid the overlap of their         |              |
|           |             | chromatographic peaks on other peaks;                                           |              |
|           |             | - calibration: the calibration is obtained by the internal standard method,     |              |
|           |             | with three known-concentration samples of each of the above                     |              |
|           |             | mentioned components and the internal standard (the internal                    |              |
|           |             | standard should be a chemical compound similar to Freon-11 and                  |              |
|           |             | Freon-12, its chromatographic peak should not overlap the Freon-11              |              |
|           |             | and Freon-12 chromatographic peaks or those of other compounds of               |              |
|           |             | interest in the mixture).                                                       |              |
|           |             | The chromatograms should be available for two years after the analysis. In      |              |
|           |             | chromatograms, the peaks of the above-mentioned components and internal         |              |
|           |             | standard (eventually unknown) should be clearly identified.                     |              |

| WEEE      | Type of     | Description of the Analysis                                                                                                                                | Commente     |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Stream    | analysis    | Description of the Analysis                                                                                                                                | comments     |
| Temperatu | Foreign     | Method description as per the standard CLC/TS 50625-3-4 (Annex                                                                                             | Sample       |
| re        | matters     | EE.4):                                                                                                                                                     | volume = ca  |
| exchange  | content in  |                                                                                                                                                            | 100 – 750 ml |
| equipment | nolvurethan | Determination of foreign matters content in polyurethane fraction by                                                                                       |              |
|           | o fraction  | thermogravimetric analysis                                                                                                                                 |              |
|           | enaction    | Dreneration of complex.                                                                                                                                    |              |
|           |             | Preparation of samples:                                                                                                                                    |              |
|           |             | Drying: applicable                                                                                                                                         |              |
|           |             | Homogenization and sub-sampling: mechanical homogenization using                                                                                           |              |
|           |             | cryogenic grinding to a powder in order to obtain a test portion as a                                                                                      |              |
|           |             | subsample.                                                                                                                                                 |              |
|           |             | NOTE Homogenization of samples is absolutely necessary in order to get a representative subsample for the subsequent analysis                              |              |
|           |             | The analysis is carried out in two steps, a semiguantitative analysis by IR                                                                                |              |
|           |             | spectrometry and a quantitative analysis by thermogravimetric analysis (TGA).                                                                              |              |
|           |             | Spectroscopy IR (FT-IR):                                                                                                                                   |              |
|           |             | The first step should aim to determine the type of impurities which could be                                                                               |              |
|           |             | present in the polyurethane fraction.                                                                                                                      |              |
|           |             | Spectra of Solids - The KBr Disc Technique                                                                                                                 |              |
|           |             | Before pressing, the polyurethane sample has to be mixed with the KBr                                                                                      |              |
|           |             | powder at a sample concentration level of 0,1 % to 2 %. The sample has to be grounded to a fine powder in order to reduce scattering losses and absorption |              |
|           |             | band distortions.                                                                                                                                          |              |
|           |             | Preparation of the mixture: 1/2 mm to 1 mm layer of the mixture should be                                                                                  |              |
|           |             | transferred from the mortar to the die and the disc should be pressed. The disk                                                                            |              |
|           |             | should then be placed in the disk holder and the spectrum should be obtained.                                                                              |              |
|           |             | Step 2: Thermogravimetric method (TGA):                                                                                                                    |              |
|           |             | TGA is a thermal analysis technique which consists of the measurement of the                                                                               |              |
|           |             | variation in weight of a sample as a function of temperature.                                                                                              |              |
|           |             | I ne analysis has to be conducted under the following conditions of the IGA                                                                                |              |
|           |             | The sample should be beated at 10 K/min to 1 000 °C under                                                                                                  |              |
|           |             | an atmosphere of oxygen.                                                                                                                                   |              |
|           |             | - Measurement in the thermal analyser.                                                                                                                     |              |
|           |             | ,                                                                                                                                                          |              |
|           |             |                                                                                                                                                            |              |

| WEEE<br>Stream | Type of     | Description of the Analysis                                                                   | Comments     |
|----------------|-------------|-----------------------------------------------------------------------------------------------|--------------|
| Temperatu      | Foreign     | Method description as per the standard CLC/TS 50625-3-4 (Appex                                | Sample       |
| re             | matters     | FE 5).                                                                                        | volume = ca  |
| exchange       | matters     |                                                                                               | 100 – 750 ml |
| equipment      | content in  | Determination of foreign matters content in polyurethane fraction by                          |              |
|                | polyurethan | selective extraction method                                                                   |              |
|                | e fraction  |                                                                                               |              |
|                |             | Preparation of samples:                                                                       |              |
|                |             | Phase separation: not necessary                                                               |              |
|                |             | Drying: applicable                                                                            |              |
|                |             | and pectle or cryogenic grinding to a powder in order to obtain a test portion                |              |
|                |             | of 50 g as a subsample                                                                        |              |
|                |             | NOTE Homogenization of samples is absolutely necessary in order to get a representative       |              |
|                |             | subsample for the subsequent analysis.                                                        |              |
|                |             | Analysis:                                                                                     |              |
|                |             | The analysis is carried out in two steps, an automated solid liquid extraction of             |              |
|                |             | a solid liquid extraction in a semiguantitative analysis by IR spectrometry and a             |              |
|                |             | quantitative analysis by thermogravimetric analysis (TGA).                                    |              |
|                |             | Step 1: Pressurized liquid extraction of non polyurethane polymers:                           |              |
|                |             | The first step should aim to determine extract and weigh non polyurethane-                    |              |
|                |             | polymers from the polyurethane fraction, which may include (PE, PP, PS, ABS,                  |              |
|                |             | PMMA).                                                                                        |              |
|                |             | 3 g to 8 g of the homogenized polyurethane sample (exact input weight is                      |              |
|                |             | determined: dm(IN)) are mixed with the nine fold amount of pre extracted and                  |              |
|                |             | with two solvents, dichloromethane and toluene:                                               |              |
|                |             | DCM: 3 static cycles for 20 min at $80^{\circ}$ C                                             |              |
|                |             | Toluene: 3 static cycles for 20 min at 130 °C                                                 |              |
|                |             | Extracts are combined in vessel vials and dried under a stream of Nitrogen,                   |              |
|                |             | whereas the samples are placed in a heated alumina tray. The weight of the                    |              |
|                |             | dry matter extracted with both, Dichloromethane and Toluene, is determined                    |              |
|                |             | (dm(DCM) and dm(TOL))                                                                         |              |
|                |             | Step 2: Depolymerize and extract polyurethane from the sample:                                |              |
|                |             | The extraction residue of step 1 is filled into a 500 ml flask and                            |              |
|                |             | aepolymerized/extracted for 1 h at 230 °C in givcol using a heating mantle and                |              |
|                |             | filter using a suction filter aggregate. The filter residue is extracted a second             |              |
|                |             | time with $80 \mathrm{g}$ Glycol in the same flask and again filtered. Both filter namers are |              |
|                |             | washed with Ethanol and dried. The dry weight of the filter residues is                       |              |
|                |             | determined (dm FR)                                                                            |              |
|                |             | Calculation of polyurethane content (PU)                                                      |              |
|                |             | PU (%) = 1- (dm(DCM)+dm(TOL)+dm(FR))/dm(IN)                                                   |              |
|                |             |                                                                                               |              |
|                |             |                                                                                               |              |

| WEEE      | Type of     | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b>     |
|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Stream    | analysis    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments     |
| Temperatu | Water       | Method description as per the WEEELABEX Official                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample       |
| re        | content in  | Statement_2017_001:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | volume = ca  |
| exchange  | polyurethan |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 – 750 ml |
| equipment | e fraction  | Determination of water content in polyurethane (PU) fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|           |             | An accredited laboratory shall determine the water content in PU fraction by<br>using the analytical method "Thermogravimetric analysis (drying to constant<br>weigh) - Determination of dry matter and water content on a mass basis per<br>ISO 11465:1993" with the following specifications:<br>Drying temperature = max. 105 °C (to ensure than only water<br>is released from the sample);<br>Drying time = "to constant weigh", however at least 24 hours;<br>Sample homogenisation and reduction under 0,3 mm;<br>At least three test portions shall be analysed by the<br>laboratory (due to a possible inhomogeneity of samples);<br>The laboratory is requested to express the result as the<br>average of the three sub-results;<br>The laboratory is requested to specify the uncertainty of the<br>result (in %).<br>Note: If an alternative method of sample preparation or analytical method is to<br>be used (e.g. "EN 14346 Characterization of waste - Calculation of dry matter<br>by determination of dry residue or water content"), the laboratory shall<br>validate the alternative method in accordance with clause 5.4.5 of ISO/IEC<br>17025:2005 |              |

| WEEE<br>Stream                                             | Type of<br>analysis                                      | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                    |
|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| WEEE<br>Stream<br>Temperatu<br>re<br>exchange<br>equipment | Type of<br>analysis<br>Residual<br>refrigerant<br>in oil | Description of the Analysis           Method description as per the standard CLC/TS 50625-3-4 (Annex CC.2):           Determination of residual refrigerant in oil – METHOD 1           Extraction:           At the analysis laboratory, a sample of the oil has to be weighed (0,5 to 2,0 g).           In a gastight 60 ml vessel, VFCs and VHCs are extracted from oil in 50 ml of acetone.           After the extraction, 1 ml of Acetone is diluted in 9 ml of water in a 20 ml headspace vial. Two different test portions have to be prepared with two concentrations of doped water.           Analysis:           The vial has to be heated at 80 °C for at least 30 min. Then, a sample of the gas in the headspace has to be injected into a GC-MS instrument.           As a minimum R12, R22, R134a and R600a will be detected.           Chromatography Settings:           The chromatographic column: capillary column specific for the determination of volatile organic pollutants, particularly for chlorofluorinated pollutants;           - Advised thermal profile: plateau at 50 °C for 10 min followed by a 10 °C/min thermal ramp until 280 °C (at the end of the analysis, a cleaning process at a high temperature depending on the column model is needed);           - Gas-transport flux and pressure: gas-transport flux and pressure shall guarantee good resolution and separation of the chromatographic peaks; gas-transport flux and pressure shall avoid the overlap | Comments<br>Sample<br>volume = ca<br>100 ml |
|                                                            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |

| WEEE        | Type of    | Description of the Analysis                                                                                                                                          | Comments     |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Stream      | analysis   |                                                                                                                                                                      | comments     |
| CRT display | Sulphur in | Method description as per the standard CLC/TS 50625-3-3 (Annex CC):                                                                                                  | Sample       |
| appliances  | glass      |                                                                                                                                                                      | volume = ca  |
|             | fraction   | General:                                                                                                                                                             | 1,5 kg       |
|             |            | extraction of the residual content of fluorescent coatings from the surface of the                                                                                   | Number of    |
|             |            | CRT glass with the hydrochloric acid, and determine the content of sulphur (S) in a                                                                                  | samples per  |
|             |            | liquid sample.                                                                                                                                                       | each         |
|             |            | This analysis shall be performed separately on each of the five samples collected.                                                                                   | analysis – 5 |
|             |            | Test portion preparation:                                                                                                                                            | single       |
|             |            | CRT glass nieces without grinding from the fluorescent coatings removal process                                                                                      | samples to   |
|             |            | NOTE In the case of grinding/milling, it is difficult to ensure the homogeneity of the                                                                               | be analysed  |
|             |            | sample; after grinding, the fluorescent coatings particles are in a form of freely                                                                                   | separately   |
|             |            | flowing dust that separates from the CRT glass particles because of the density                                                                                      | separately   |
|             |            | difference.                                                                                                                                                          |              |
|             |            | Approximate geometry/size of cullet. about 6 x 6 cm, in order to pass the mouth of                                                                                   |              |
|             |            | Leaching ten:                                                                                                                                                        |              |
|             |            | Leaching shall be done with aqueous hydrochloric acid.                                                                                                               |              |
|             |            | The concentration of hydrochloric acid shall be as a minimum 8 % (w/w). After                                                                                        |              |
|             |            | mixing and cooling to room temperature, the acid is ready for use.                                                                                                   |              |
|             |            | NOTE For example, 500 ml of conc. HCL is added in one portion into 2000 ml of                                                                                        |              |
|             |            | water in a glass bottle of 2,5 L capacity in a fume board. This volume of acid is                                                                                    |              |
|             |            | Mineral acids with oxidative effects such as HNO3 or agua regia should not be used                                                                                   |              |
|             |            | for leaching tests. Oxidative dissolution in the fluorescent coatings/CRT screen                                                                                     |              |
|             |            | system leads to formation of barium and sulphate ions in solution. Presence of                                                                                       |              |
|             |            | barium and sulphate ions in solution will very probably lead to precipitation of                                                                                     |              |
|             |            | Insoluble barium sulphate. This would lead to possible underestimation of                                                                                            |              |
|             |            | recommended, as barium sulphate formation is avoided due to keeping sulphur in                                                                                       |              |
|             |            | a sulphide state. Employing sulphur as a tracer element requires prompt sampling                                                                                     |              |
|             |            | and analysis.                                                                                                                                                        |              |
|             |            | Leaching procedure:                                                                                                                                                  |              |
|             |            | A fume board shall be used during this procedure to avoid exposure to H2S concentrations in ambient air                                                              |              |
|             |            | First the CRT glass sample shall be weighed with 1 g precision.                                                                                                      |              |
|             |            | Hydrochloric acid (approximately 500 ml) is added quickly in one portion on the                                                                                      |              |
|             |            | sample (approximately 1,5 kg) in the vessel. The vessel is tightly closed with a                                                                                     |              |
|             |            | screw cap and tightened with Parafilm.                                                                                                                               |              |
|             |            | The vessel is left in an ultrasonic bath for 15 min at room temperature, occasionally taking away and swirling unside down                                           |              |
|             |            | Then it shall be left to stand at room temperature for 15 min, with occasional                                                                                       |              |
|             |            | swirling upside down.                                                                                                                                                |              |
|             |            | After final swirling, the leachate shall be taken with a syringe of 10 ml capacity,                                                                                  |              |
|             |            | filtered through a syringe filter of 0,45 $\mu$ m porosity into a plastic test tube, and                                                                             |              |
|             |            | The support content shall be analysed not later than one hour after the sampling                                                                                     |              |
|             |            | procedure of the leachate.                                                                                                                                           |              |
|             |            | Quantification technique:                                                                                                                                            |              |
|             |            | The sulphur content shall be quantified with an ICP OES instrument, according to                                                                                     |              |
|             |            | ISO 11885.                                                                                                                                                           |              |
|             |            | Sulphur standard:                                                                                                                                                    |              |
|             |            | calibration shall be done by the laboratory, in the leachate, the sulphur is present as volatile hydrogen sulphide non-hydrate, for this reason, ordinary accessible |              |
|             |            | sulphur standards (generally containing sulphur as sulphate) cannot be used for                                                                                      |              |
|             |            | calibration. Only the standards containing sulphur as a sulphide can be used.                                                                                        |              |
|             |            |                                                                                                                                                                      |              |

| WEEE                      | Type of                  | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                                                                                                                                                                       |
|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stream                    | analysis                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | comments                                                                                                                                                                                       |
| CRT display<br>appliances | PbO in glass<br>fraction | Method description as per the standard CLC/TS 50625-3-3 (Annex DD):         General:         Three types of analysis are applicable:         — Determination of Pb content in panel glass by X-ray fluorescence (XRF), for laboratory analysis.         — Determination of Pb content in panel glass by inductively coupled plasma optical emission spectrometry (ICP-OES) on a eluate after mineralisation of a the test portion.         Analysis by ICP OES method:         Test portion preparation:         The laboratory shall implement EN 15002.         1. Phases separation: Not necessary         2. Measure the moisture content of a sub sample and use this value for a correction on the test         sample.         3. Size reduction: reduce to 250 μm.         4. Mechanical subsampling to obtain a test portion of 200 mg.         Mineralization:         The laboratory shall implement EN 13656.         Analytical technique         The laboratory shall implement ISO 11885.         Reporting:         For the reporting of XRF or ICP OES analysis, the laboratory shall report lead or lead oxide, based on dry matter.         As the limit value is on PbO, it is necessary to calculate the PbO content as follows:         Description Abbreviation         Lead oxide content QPbO         Lead quantity in the sample – results from laboratory QPb         QPbO = QPb x (1 + 0.07722) | Sample<br>volume = ca<br>3 l<br>the ICP OES<br>method is<br>the only<br>analysis<br>method<br>allowed to<br>be accepted<br>by a<br>WEEELABEX<br>Auditor<br>during a<br>validated<br>batch test |
|                           |                          | Analysis by XRF method:<br>The laboratory shall implement the standard EN 15309 or the standard EN<br>63321-3-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the XRF<br>method shall<br>not be<br>accepted<br>during a<br>validated<br>batch test                                                                                                           |

| WEEE                                                 | Type of                                                                                 | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commonto                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Stream                                               | analysis                                                                                | Description of the Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Comments                                 |
| WEEE<br>Stream<br>Flat panel<br>display<br>equipment | Type of<br>analysis<br>Mercury in<br>physically<br>smallest<br>shredded<br>mix fraction | Description of the Analysis           Method description as per the standard CLC/TS 50625-3-3 (Annex FF):           Principles:           This annex provides information for the analysis of mercury in the de-polluted physically smallest shredded mixed fraction of flat panel displays considering the problems arising particularly from the homogenization of heterogeneous metallic fractions.           The chemical laboratory shall follow the given principles and has enough experience with digestion and test portion preparation of mercury analysis in shredded mixed fractions of flat panel displays.           The method of test portion preparation shall consider that most of the mercury in the physically smallest shredded fraction is bound as amalgam on metallic parts. The total mercury content of the whole sample shall be analysed.           The result should also encompass the amalgam mercury namely in the small electrode wires.           The result of the analysis should represent the whole laboratory sample (normally 1) including all kind and size of pieces.           The digestion and test portion preparation shall avoid any release of mercury as loss to the ambient air, heating of samples during the sampling preparation process shall be avoided. If a release of mercury is navoidable, it shall be absorbed and determined qualitatively. The digestion and preparing the test portion has to be approved by quality assurances, internal references and other means of good laboratory practice (GP).           NOTE See OECD Series on principles of good laboratory practice and compliance monitoring, Number 1, OECD Principles on Good Laboratory Practice (as revised in 1997), ENV/MC/CHEM(98)17. <b>Verification</b> | Comments<br>Sample<br>volume = ca<br>1 l |
|                                                      |                                                                                         | <ul> <li>small pieces of metal (cables, pieces of printed circuit board, electronic components).</li> <li>4. Mechanical subsampling to obtain a test portion of 200 mg.</li> <li><u>Mineralisation:</u></li> <li>Mineralisation shall be carried out using EN 13657 <i>'Characterization of waste — Digestion for subsequent determination of aqua regia soluble portion of elements'</i>.</li> <li><u>Analytical technique:</u></li> <li>The laboratory shall implement one of the standards below: (no particular restrictions)</li> <li>EN ISO 12846, Water quality - Determination of mercury - Method using atomic absorption spectrometry (AAS) with and without enrichment</li> <li>ISO 16772, Soil quality - Determination of mercury in aqua regia soil extracts with coldvapour atomic spectrometry or cold-vapour atomic fluorescence spectrometry</li> <li>EN ISO 17294-2, Water quality - Application of inductively coupled plasma mass spectrometry (ICPMS) - Part 2: Determination of 62 elements (ISO 17294-2:2003)</li> <li>ISO 17852, Water quality – Determination of mercury – Method using atomic fluorescence spectrometry</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |

| WEEE      | Type of    | Description of the Analysis                                                        | Commonts    |
|-----------|------------|------------------------------------------------------------------------------------|-------------|
| Stream    | analysis   |                                                                                    | comments    |
| Gas       | Mercury in | Method description as per the standard CLC/TS 50625-3-2 (Annex BB                  | Sample      |
| discharge | the lamp   | and Annex CC):                                                                     | volume = ca |
| lamps     | treatment  |                                                                                    | 1           |
|           | fractions  | Principles:                                                                        |             |
|           | nactions   | The method of test portion preparation shall consider that most of the             |             |
|           |            | mercury in the metallic fractions is bound as amalgam. The result should also      |             |
|           |            | encompass the amalgam mercury namely in the small electrode wires.                 |             |
|           |            | The result of the analysis should represent the whole laboratory sample            |             |
|           |            | (normally 1 I) including all kind and size of pieces.                              |             |
|           |            | as loss to the ambient air, beating of samples during the sampling proparation     |             |
|           |            | as loss to the amplent air, heating of samples during the sampling preparation     |             |
|           |            | absorbed and determined quantitatively. The digestion test portion                 |             |
|           |            | preparation and analysis shall be repeated 3 times. The range of the three         |             |
|           |            | results shall not exceed 15 %. The calculated average of these three analyses      |             |
|           |            | shall be used for compliance to the limit values.                                  |             |
|           |            | The method of sample digestion and preparing the test portion shall be             |             |
|           |            | approved by quality assurances, internal references and other means of good        |             |
|           |            | laboratory practice (GLP).                                                         |             |
|           |            | NOTE OECD Series on principles of good laboratory practice and compliance          |             |
|           |            | monitoring, Number 1, OECD Principles on Good Laboratory Practice (as revised in   |             |
|           |            | 1997), ENV/MC/CHEM(98)17.                                                          |             |
|           |            | The laboratory shall verify all steps of the analysis methodology, especially that |             |
|           |            | no substantial mercury is released to the ambient air during mechanical            |             |
|           |            | processing, e.g. grinding, crushing, sieving and separating. It shall verify also  |             |
|           |            | that digestion with acid is completed. The insoluble part of the sample, filtered  |             |
|           |            | out after digestion shall be analysed of remaining mercury. The results of the     |             |
|           |            | verification procedure shall be documented and available.                          |             |
|           |            | Remarks on the analysis of mercury in heterogeneous metal or mixed                 |             |
|           |            | metal-plastic fractions                                                            |             |
|           |            | The development of a methodology to analyse mercury in heterogeneous               |             |
|           |            | mixed fractions from lamp treatment is a challenge because:                        |             |
|           |            | - there are different chemical forms of mercury in lamp fractions,                 |             |
|           |            | including amalgam; they shall all be covered by the analysis method;               |             |
|           |            | - mercury is a mobile element at room temperature and above and                    |             |
|           |            | mechanical processing of the sample                                                |             |
|           |            | - digestion of metal needs a lot of strong acid (aqua regia nitric acid)           |             |
|           |            | therefore homogenization by mechanical treatment of the sample is                  |             |
|           |            | important;                                                                         |             |
|           |            | - the composition of mixed metal fractions from lamp treatment can be              |             |
|           |            | very different in terms of size, type of metal, plastics, ceramics and             |             |
|           |            | glass.                                                                             |             |
|           |            | To make sure that there is a practical and safe approach to analyse mercury in     |             |
|           |            | such heterogeneous fractions with reproducible results, a methodology is           |             |
|           |            | under development and testing with different laboratories. This methodology        |             |
|           |            | is based on the mineralization of sample ground to 5 mm, by nitric acid at         |             |
|           |            | room temperature.                                                                  |             |
|           |            |                                                                                    |             |

| WEEE    | Type of       | Description of the Analysis                                                             | Comments    |
|---------|---------------|-----------------------------------------------------------------------------------------|-------------|
| Stream  | analysis      |                                                                                         |             |
| Photo-  | Lead in glass | Method description as per the standard CLC/TS 50625-3-5 (Clause                         | Sample      |
| voltaic | fractions     | 4.4):                                                                                   | volume = ca |
| pariers |               | Principles:                                                                             | 11          |
|         |               | The preparation of the test portion, including homogenization of the                    |             |
|         |               | heterogeneous samples shall be carried out according to one of the following            |             |
|         |               | standards:                                                                              |             |
|         |               | - EN ISO 15587-1,                                                                       |             |
|         |               | - EN 15015587-2,<br>- EN 15002.                                                         |             |
|         |               | - EN 13650.                                                                             |             |
|         |               | The chemical analysis, separation of the test portion and identification of the         |             |
|         |               | heavy metals shall be carried out according to one of the following standards:          |             |
|         |               | - EN ISO 17852,<br>- EPA6020A - 1 Revision 1. February 2007.                            |             |
|         |               | - EN ISO 17294-2.                                                                       |             |
|         |               |                                                                                         |             |
| Photo-  | Cadmium in    | Method description as per the standard CLC/TS 50625-3-5 (Clause                         | Sample      |
| voltaic | glass         | 4.4):                                                                                   | volume = ca |
| paneis  | fractions     | Principles:                                                                             | 11          |
|         |               | The preparation of the test portion, including homogenization of the                    |             |
|         |               | heterogeneous samples shall be carried out according to one of the following            |             |
|         |               | standards:                                                                              |             |
|         |               | - EN ISO 15587-1,<br>- EN ISO 15587-2.                                                  |             |
|         |               | - EN 15002,                                                                             |             |
|         |               | - EN 13650.                                                                             |             |
|         |               | The chemical analysis, separation of the test portion and identification of the         |             |
|         |               | - FN ISO 17852                                                                          |             |
|         |               | - EPA6020A - 1 Revision 1, February 2007,                                               |             |
|         |               | - EN ISO 17294-2.                                                                       |             |
| Photo-  | Selenium in   | Method description as per the standard CLC/TS E0625-2-5 (Clause                         | Sample      |
| voltaic | glass         | A A).                                                                                   | volume = ca |
| panels  | fractions     |                                                                                         | 11          |
|         | nactions      | Principles:                                                                             |             |
|         |               | The preparation of the test portion, including homogenization of the                    |             |
|         |               | heterogeneous samples shall be carried out according to one of the following standards: |             |
|         |               | - EN ISO 15587-1,                                                                       |             |
|         |               | - EN ISO 15587-2,                                                                       |             |
|         |               | - EN 15002,                                                                             |             |
|         |               | - EN 13650.                                                                             |             |
|         |               | heavy metals shall be carried out according to one of the following standards:          |             |
|         |               | - EN ISO 17852,                                                                         |             |
|         |               | - EPA6020A - 1 Revision 1, February 2007,                                               |             |
|         |               | - EN ISO 17294-2.                                                                       |             |
|         |               |                                                                                         |             |